Skip to main content

Automotive software developers call on hackers to find its flaws

A consortium of US researchers has announced the development of a universal, free, and open-source framework to protect wireless software updates in vehicles. The team issued a challenge to security experts everywhere to try to find vulnerabilities before it is adopted by the automotive industry. The new solution, called Uptane, evolves the widely used TUF (The Update Framework), developed by NYU Tandon School of Engineering Assistant Professor of Computer Science and Engineering Justin Cappos to secure
January 20, 2017 Read time: 3 mins
A consortium of US researchers has announced the development of a universal, free, and open-source framework to protect wireless software updates in vehicles. The team issued a challenge to security experts everywhere to try to find vulnerabilities before it is adopted by the automotive industry.

The new solution, called Uptane, evolves the widely used TUF (The Update Framework), developed by NYU Tandon School of Engineering Assistant Professor of Computer Science and Engineering Justin Cappos to secure software updates. Uptane is a collaboration of NYU Tandon, the University of Michigan Transport Research Institute (UMTRI), and the Southwest Research Institute (SwRI), and is supported by contracts from the US Department of Homeland Security, Science and Technology Directorate.

Modern cars contain dozens of computers, or electronic control units (ECUs), that control everything from safety equipment (airbags, brakes, engine, and transmission, and more) to entertainment systems. The increasing complexity of modern cars accompanies an increasing likelihood of flaws in the software. To combat this, vehicle makers are equipping ECUs with a secure software over-the-air (SOTA) update capability, allowing the software to be changed without visiting a service depot, resulting in fewer recalls and greater customer satisfaction. However, hackers can target these software update mechanisms to install malicious software, viruses, or even ransomware, the results of which could be catastrophic.

"Although widespread attacks are still difficult and expensive, they lie within the capabilities of nation-state cyber warriors, and it is time to begin securing the infrastructure, particularly as automotive electronics increase," Cappos said.

Uptane goes beyond TUF in order to address the unique problems posed by automotive software. For example, it allows automakers to completely control critical software but to share control when appropriate – for example, when law enforcement needs to tune a vehicle for off-road conditions. It also helps automakers to quickly deploy secure fixes for a vulnerability exploited in an attack or to remotely and inexpensively update a car's electronics.

The group has been holding regular design workgroups to develop a universal framework that could enhance the security mechanisms, protecting cars as soon as next year. As is standard practice in open-source projects, the team called upon security experts everywhere to help them find flaws in the proposed framework so that a secure final version can be adopted.

Related Content

  • July 12, 2024
    Alcea puts a lock on it in Texas
    Traffic cabinet locking solution boosts security in Dallas-Fort Worth metro area
  • November 28, 2016
    UK must prepare for increased transport cyber-security threat, says TSC
    The UK Transport sector needs to increase its focus on cyber-security in the face of rapidly emerging technological developments, according to Transport Systems Catapult (TSC). In a new report, supported by IBM, the Institute of Engineering Technology (IET), the Intelligent Mobility Partnership (IMPART) and the Digital Catapult, the TSC cites numerous trends in the realms of technology, cyber security, mobility, and society are all converging to make it a much more complex environment in which to deliver
  • January 29, 2016
    Front crash prevention slashes police-reported rear-end crashes, says IIHS
    Vehicles equipped with front crash prevention are much less likely to rear-end other vehicles, the Insurance Institute for Highway Safety (IIHS) has found in the first study of the feature's effectiveness using US police-reported crash data. The study found that systems with automatic braking reduce rear-end crashes by about 40 per cent on average, while forward collision warning alone cuts them by 23 per cent. The automatic braking systems also greatly reduce injury crashes.
  • May 31, 2013
    Data goldmines offer rich pickings
    Astronomical is not too grand a term to describe the current rate of growth in transportation-related data. Massive amounts of traffic related information, such as speed, volume, incidents and weather are being generated every second by road operators and users alike. Big data’ derives its name from the sheer amount and complexity of available raw data. Its potential value is starting to emerge among the intelligent transportation systems community. A gold rush is taking place to capture this value, with da