Skip to main content

Artificial intelligence systems for autonomous driving on the rise, says IHS

According to the latest report from market research firm HIS, Automotive Electronics Roadmap Report, as the complexity and penetration of in-vehicle infotainment systems and advanced driver assistance systems (ADAS) increases, there is a growing need for hardware and software solutions that support artificial intelligence, which uses electronics and software to emulate the functions of the human brain. In fact, unit shipments of artificial intelligence (AI) systems used in infotainment and ADAS systems are
June 17, 2016 Read time: 3 mins
According to the latest report from market research firm HIS, Automotive Electronics Roadmap Report, as the complexity and penetration of in-vehicle infotainment systems and advanced driver assistance systems (ADAS) increases, there is a growing need for hardware and software solutions that support artificial intelligence, which uses electronics and software to emulate the functions of the human brain. In fact, unit shipments of artificial intelligence (AI) systems used in infotainment and ADAS systems are expected to rise from just 7 million in 2015 to 122 million by 2025, says IHS. The attach rate of AI-based systems in new vehicles was 8 percent in 2015, and the vast majority were focused on speech recognition. However, that number is forecast to rise to 109 percent in 2025, as there will be multiple AI systems of various types installed in many cars.

According to the report, AI-based systems in automotive applications are relatively rare, but they will grow to become standard in new vehicles over the next five years, especially in: Infotainment human-machine interface, including speech recognition, gesture recognition (including hand-writing recognition), eye tracking and driver monitoring, virtual assistance and natural language interfaces; ADAS and autonomous vehicles, including camera-based machine vision systems, radar-based detection units, driver condition evaluation, and sensor fusion engine control units (ECU).

Specifically in ADAS, deep learning -- which mimics human neural networks -- presents several advantages over traditional algorithms; it is also a key milestone on the road to fully autonomous vehicles. For example, deep learning allows detection and recognition of multiple objects, improves perception, reduces power consumption, supports object classification, enables recognition and prediction of actions, and will reduce development time of ADAS systems.

The hardware required to embed AI and deep learning in safety-critical and high-performance automotive applications at mass-production volume is not currently available due to the high cost and the sheer size of the computers needed to perform these advanced tasks. Even so, elements of AI are already available in vehicles today. In the infotainment human machine interfaces currently installed, most of the speech recognition technologies already rely on algorithms based on neural networks running in the cloud. The 2015 BMW 7 Series is the first car to use a hybrid approach, offering embedded hardware able to perform voice recognition in the absence of wireless connectivity. In ADAS applications, Tesla claims to implement neural network functionality, based on the MobilEye EYEQ3 processor, in its autonomous driving control unit.

Related Content

  • Tattile to unveil the new Vega family and Stark
    August 29, 2022
    Italy-headquartered Tattile, whose technology and systems are deployed in a wide range of applications throughout the world, will present several breakthrough innovations. To highlight just two innovations that will wow attendees in Los Angeles, Tattile will unveil the new Vega family as well as the Stark Platform, a modular architecture for demanding AI applications. 
  • AGD650 delivers rich data stream
    April 26, 2022
    Stop-line optical AI detector sends IP, POE, real-time video to ITS control rooms
  • Free-flow upgrade to Holland's Westerschelde tunnel's toll system
    February 1, 2012
    Unbroken service Technolution's Winifred Roggekamp and Dave Marples describe efforts to upgrade the Westerscheldetunnel's tolling system to give free-flow capability. Until 2003 the Flanders region of Zeeland, in the south-west of the Netherlands, was connected to the mainland only by ferry. The new Westerscheldetunnel, a 6.6km toll tunnel, improves communications with the region considerably, taking some 100km off the alternative road journey. In 2006 it was recognised that the toll plaza for the tunnel ne
  • Wireless traffic data in real time
    January 31, 2012
    The effect of moving objects on the electromagnetic landscape set up by cellular telephony networks can be detected and interpreted to give real-time traffic data across large geographical areas at low cost. Here, we revisit the Celldar concept. Global economic downturn has pushed public-sector agencies, transport administrations among them, to push even harder for cost efficiencies. Unfortunately, when it comes to transport safety and efficiency the public sector often has to work up to a cost rather than