Skip to main content

Artificial intelligence systems for autonomous driving on the rise, says IHS

According to the latest report from market research firm HIS, Automotive Electronics Roadmap Report, as the complexity and penetration of in-vehicle infotainment systems and advanced driver assistance systems (ADAS) increases, there is a growing need for hardware and software solutions that support artificial intelligence, which uses electronics and software to emulate the functions of the human brain. In fact, unit shipments of artificial intelligence (AI) systems used in infotainment and ADAS systems are
June 17, 2016 Read time: 3 mins
According to the latest report from market research firm HIS, Automotive Electronics Roadmap Report, as the complexity and penetration of in-vehicle infotainment systems and advanced driver assistance systems (ADAS) increases, there is a growing need for hardware and software solutions that support artificial intelligence, which uses electronics and software to emulate the functions of the human brain. In fact, unit shipments of artificial intelligence (AI) systems used in infotainment and ADAS systems are expected to rise from just 7 million in 2015 to 122 million by 2025, says IHS. The attach rate of AI-based systems in new vehicles was 8 percent in 2015, and the vast majority were focused on speech recognition. However, that number is forecast to rise to 109 percent in 2025, as there will be multiple AI systems of various types installed in many cars.

According to the report, AI-based systems in automotive applications are relatively rare, but they will grow to become standard in new vehicles over the next five years, especially in: Infotainment human-machine interface, including speech recognition, gesture recognition (including hand-writing recognition), eye tracking and driver monitoring, virtual assistance and natural language interfaces; ADAS and autonomous vehicles, including camera-based machine vision systems, radar-based detection units, driver condition evaluation, and sensor fusion engine control units (ECU).

Specifically in ADAS, deep learning -- which mimics human neural networks -- presents several advantages over traditional algorithms; it is also a key milestone on the road to fully autonomous vehicles. For example, deep learning allows detection and recognition of multiple objects, improves perception, reduces power consumption, supports object classification, enables recognition and prediction of actions, and will reduce development time of ADAS systems.

The hardware required to embed AI and deep learning in safety-critical and high-performance automotive applications at mass-production volume is not currently available due to the high cost and the sheer size of the computers needed to perform these advanced tasks. Even so, elements of AI are already available in vehicles today. In the infotainment human machine interfaces currently installed, most of the speech recognition technologies already rely on algorithms based on neural networks running in the cloud. The 2015 BMW 7 Series is the first car to use a hybrid approach, offering embedded hardware able to perform voice recognition in the absence of wireless connectivity. In ADAS applications, Tesla claims to implement neural network functionality, based on the MobilEye EYEQ3 processor, in its autonomous driving control unit.

Related Content

  • CES 2023: NXP chip for ADAS & AVs
    January 6, 2023
    Radar one-chip family allows long-range detection/separation of small and larger objects
  • Driving forward cooperative intersection safety applications
    July 24, 2012
    Gregory Davis, FHWA, John Harding, NHTSA, and Mike Schagrin, ITS Joint Program Office (RITA) chart the course for cooperative intersection safety applications being pursued as part of the IntelliDrive programme. Crashes at intersections accounted for 8,703 highway fatalities in the US in 2008. Research and development is moving forward on IntelliDriveSM safety applications designed to help drivers avoid intersection accidents. These new safety systems could substantially drive down the highway death and inj
  • Agnik uses Kore M2M network for auto insurance application
    April 20, 2012
    Agnik, a US-based data analytics company for distributed, mobile and embedded environments, has selected Kore Telematics to power its MineDrive usage-based automobile insurance application. This provides insurance carriers with detailed intelligence about driver and automobile performance, enabling more accurate adjustment of their offerings.
  • Nedap expands ANPR camera range
    March 19, 2019
    Nedap has launched two automatic number plate recognition (ANPR) cameras for vehicle access control applications. The company says its advanced ANPR Lumo uses deep learning algorithms to capture number plates which include different font formats. The ANPR Access V2, a successor of Nedap’s ANPR Access, is expected to offer improved performance while being compatible with existing installations. Both cameras integrate parking and traffic management systems as well as third-party security systems using