Skip to main content

Virginia Automated Corridors unveiled

The Virginia Automated Corridors, a new initiative that its developers claim will revolutionise the development and deployment of automated vehicles, has been unveiled on more than 70 miles of interstates and arterial roads in the Northern Virginia region. The Corridors were established by the Virginia Tech Transportation Institute in partnership with the Virginia Department of Transportation; the Virginia Department of Motor Vehicles; Transurban; and Here, Nokia’s mapping business in support of the tran
June 3, 2015 Read time: 2 mins
The Virginia Automated Corridors, a new initiative that its developers claim will revolutionise the development and deployment of automated vehicles, has been unveiled on more than 70 miles of interstates and arterial roads in the Northern Virginia region.

The Corridors were established by the 5593 Virginia Tech Transportation Institute in partnership with the 1747 Virginia Department of Transportation; the Virginia Department of Motor Vehicles; 600 Transurban; and 7643 Here, 183 Nokia’s mapping business in support of the transportation institute’s automated vehicle research.

The corridors include Interstates 66, 495, and 95, as well as state routes 29 and 50, roads which compose one of the most congested corridors in the US, with multiple transportation challenges that could be mitigated through the use of automation, including congestion. The corridors also include two test-track environments: the Virginia Smart Road, located on-site at the Virginia Tech Transportation Institute; and the Virginia International Raceway.

The Virginia Automated Corridors integrate a range of resources, including access to dedicated high-occupancy toll lanes managed by Transurban along Interstates 495 and 95; high-definition mapping capabilities, real-time traffic and incidents, intelligent routing, and location cloud technology supported by Here, which has worked with major automakers on previous automated-vehicle projects; pavement markings maintained by the Virginia Department of Transportation for completeness and retro-reflectivity; accurate localisation via high-precision global navigation satellite systems; connected-vehicle capabilities enabled by dedicated short-range communications and cellular technology; access to sophisticated, unobtrusive data acquisition systems; and operations at higher speeds along a test track that features complex curves.

The corridors will help facilitate the use of state roads and test facilities for automated-vehicle testing, certification, and migration towards deployment.

“Next-generation vehicle technologies can help transform our transportation system, from enhancing safety to supporting driver convenience,” said Tom Dingus, director of the Virginia Tech Transportation Institute. “Our goal with the Virginia Automated Corridors is to ensure automated-vehicle developers and suppliers have access to both a robust roadway environment and significant research support to create, test, and deploy systems that are beneficial to users.”

For more information on companies in this article

Related Content

  • Michael Baker International to implement US smart mobility corridor
    April 5, 2018
    Michael Baker International will provide technical management for the implementation of connected vehicle technologies along a 35-mile stretch of the US Route 33 near Columbus, Ohio. The project aims to make roads safer, less congested and equipped for real-life testing of connected and autonomous vehicles and is scheduled for completion in January 2020. NW 33 Innovation Corridor Council of Governments (NW33) chose the provider of engineering solutions in a $1m (£710,200) contract that runs between the
  • Developing an integrated WIM/ANPR enforcement system
    July 31, 2012
    The weigh in motion market remains especially buoyant and technological development continues to reflect this. Although there are major differences in operating philosophies, particularly between developed and developing countries, both the numbers of countries using Weigh In Motion (WIM) technology and the numbers of systems that they deploy are on the increase.
  • Innovative traffic information system
    January 31, 2012
    From the roadside James Foster compiles some eye-catching news, deployments and product picks from the work zone
  • A coalition of the willing: iATL
    April 5, 2024
    A living lab on the streets of Georgia, US, is helping to improve traffic safety by real-world deployments of technology. ITS International talks to the founder and some of the partners at the Infrastructure Automotive Technology Laboratory