Skip to main content

Virginia Automated Corridors unveiled

The Virginia Automated Corridors, a new initiative that its developers claim will revolutionise the development and deployment of automated vehicles, has been unveiled on more than 70 miles of interstates and arterial roads in the Northern Virginia region. The Corridors were established by the Virginia Tech Transportation Institute in partnership with the Virginia Department of Transportation; the Virginia Department of Motor Vehicles; Transurban; and Here, Nokia’s mapping business in support of the tran
June 3, 2015 Read time: 2 mins
The Virginia Automated Corridors, a new initiative that its developers claim will revolutionise the development and deployment of automated vehicles, has been unveiled on more than 70 miles of interstates and arterial roads in the Northern Virginia region.

The Corridors were established by the 5593 Virginia Tech Transportation Institute in partnership with the 1747 Virginia Department of Transportation; the Virginia Department of Motor Vehicles; 600 Transurban; and 7643 Here, 183 Nokia’s mapping business in support of the transportation institute’s automated vehicle research.

The corridors include Interstates 66, 495, and 95, as well as state routes 29 and 50, roads which compose one of the most congested corridors in the US, with multiple transportation challenges that could be mitigated through the use of automation, including congestion. The corridors also include two test-track environments: the Virginia Smart Road, located on-site at the Virginia Tech Transportation Institute; and the Virginia International Raceway.

The Virginia Automated Corridors integrate a range of resources, including access to dedicated high-occupancy toll lanes managed by Transurban along Interstates 495 and 95; high-definition mapping capabilities, real-time traffic and incidents, intelligent routing, and location cloud technology supported by Here, which has worked with major automakers on previous automated-vehicle projects; pavement markings maintained by the Virginia Department of Transportation for completeness and retro-reflectivity; accurate localisation via high-precision global navigation satellite systems; connected-vehicle capabilities enabled by dedicated short-range communications and cellular technology; access to sophisticated, unobtrusive data acquisition systems; and operations at higher speeds along a test track that features complex curves.

The corridors will help facilitate the use of state roads and test facilities for automated-vehicle testing, certification, and migration towards deployment.

“Next-generation vehicle technologies can help transform our transportation system, from enhancing safety to supporting driver convenience,” said Tom Dingus, director of the Virginia Tech Transportation Institute. “Our goal with the Virginia Automated Corridors is to ensure automated-vehicle developers and suppliers have access to both a robust roadway environment and significant research support to create, test, and deploy systems that are beneficial to users.”

For more information on companies in this article

Related Content

  • Qualcomm: V2X enhances safety, adding cloud connectivity informs services
    September 29, 2023
    Many of the fatalities that occur on roadways are preventable. The application of technology could eliminate or mitigate the severity of up to 80% of non-impaired crashes. Jim Misener Senior Director and V2X Ecosystem Lead of Qualcomm Technologies, Inc. explains how
  • US DOTs introduce measures to stop wrong-way driving
    March 28, 2018
    Wrong-way driving (WWD) is a remarkably innocuous term for incidents that all too often cause some of the worst accidents that emergency services have to deal with. Several US states are now taking steps to minimise the problem, as Alan Dron finds out. You’re driving down a highway at night when you see approaching headlights. You initially assume they are merely those of an oncoming car on the opposite carriageway. It’s only when they are within 200 yards or so that you realise that the other driver is in
  • Making ITS connections requires leadership
    January 23, 2020
    From making the commute more bearable to saving the planet, Jim Alfred of BlackBerry Certicom believes that ITS has the capacity to drive a range of transformational opportunities – but leadership is required, he warns
  • Arizona DOT to test prototype wrong-way vehicle detection system
    November 25, 2015
    After a comprehensive study of wrong-way driving crashes on state highways and how technology may help reduce the threat, the Arizona Department of Transportation (ADOT) is planning a prototype project to use existing highway sensors to detect wrong-way vehicles and alert authorities and other motorists. ADOT director John Halikowski said the study sets the stage for the agency to develop and test a unique and innovative system to detect and track wrong-way drivers, improving opportunities for law enforceme