Skip to main content

UR:BAN developing driver assistance and traffic management systems

European vehicle manufacturers, including BMW, Opel and Mercedes-Benz and MAN, are taking part in a new project to develop advanced driver assistance and traffic management systems for cities. The focus is on the human element in all aspects of mobility and traffic and takes the form of three approaches: Cognitive Assistance; Networked Traffic Systems; and Human Factors in Traffic. The four-year UR:BAN project (from a German acronym for Urban Space: User-oriented assistance systems and network managemen
May 16, 2014 Read time: 3 mins

European vehicle manufacturers, including 1731 BMW, 4233 Opel and 1685 Mercedes-Benz and 267 MAN, are taking part in a new project to develop advanced driver assistance and traffic management systems for cities. The focus is on the human element in all aspects of mobility and traffic and takes the form of three approaches: Cognitive Assistance; Networked Traffic Systems; and Human Factors in Traffic.

 

The four-year UR:BAN project (from a German acronym for Urban Space: User-oriented assistance systems and network management), has been running since 2012 , funded by the German Federal Ministry for Economic Affairs and Energy, with 31 partners from the automotive industry, electronics/software development, research institutes and municipalities participating.

 

To tackle the cognitive assistance challenge, Opel is developing an advanced driver assistance system which uses a camera, radar and modified steering and braking systems. When a driver fails to responded to an impending collision, the system will take evasive action to steer the car away from the object.

 

Opel is also working on car-to-X communication system which shares data with other vehicles and the traffic infrastructure over a wi-fi connection. The system would apparently operate like the 2125 Audi Online traffic light information system and advise drivers how fast to travel to ensure they can get a green light at an intersection.

 

Meanwhile BMW is developing a driver assistance system to help protect pedestrians: the system analyses the situation and the pedestrian’s behaviour to assess whether there is a risk of collision with the vehicle. Accidents with pedestrians can be avoided by braking, steering or a combination of the two.  Systems installed in a BMW 5 series research vehicle make it possible to recognise detailed features of a pedestrian, i.e. the head and upper part of the body and to classify the direction in which the pedestrian is moving.

 

Truck manufacturer MAN is looking into ways of making commercial vehicles safer and more efficient for city driving. The company’s researchers are how vehicles can most efficiently provide information from assistance systems to the driver in busy urban traffic and how the cockpit can be designed so as to display exactly the right information to the driver in any given traffic situation.

 

BMW anticipates that UR:BAN will foster radical improvements in traffic flow in the future, as BMW Managing Director Dr Christoph Grote, explained: "This will enable us to further increase safety, efficiency and comfort in urban areas to significant effect," he said. 

Related Content

  • September 24, 2015
    Siemens launches radar-based parking space detection pilot
    As part of the City2.e 2.0 research project, Siemens is demonstrating a faster way to find kerbside parking in the Bundesallee in Berlin in cooperation with the Senate Department for Urban Development and the Environment in Berlin (SenStadtUm), the VMZ Berlin Betreibergesellschaft mbH, the Institute for Climate Protection, Energy and Mobility (IKEM), and the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI). Street lamps on a 200 metre long section of road betwee
  • June 6, 2016
    Autonomous driving – what can we really expect?
    Dave Marples of Technolution BV looks beyond the hype to the practical implementation of autonomous vehicles. Having looked at the development of this sector for some time, I am concerned about the current state of autonomous driving development as engineering (and marketing) have run way ahead of the wider systemic, and legislative, requirements to support an autonomous future.
  • August 14, 2015
    Study: Consumers do not understand vehicle safety features
    A new study by the University of Iowa found that a majority of drivers expressed uncertainty about how many potentially life-saving vehicle safety technologies work. The survey also showed that 40 per cent of drivers report that their vehicles have acted or behaved in unexpected ways. The study, conducted by the University of Iowa Transportation and Vehicle Safety Research Division, examined drivers' knowledge of vehicle safety systems, as well as their understanding and use of defensive driving techniqu
  • August 5, 2013
    Measuring the effectiveness of winter VMS
    A survey into the effectiveness of weather-related variable message signs on a trans-mountain highway has some interesting results, as Alexis Bacelar told ITS Europe. A study in the Massif Central region of France evaluating the usefulness of winter weather warning signs has highlighted the effect of variable message signs on driver behaviour. During the winter of 2009-2010, road operator Massif Central Direction Interdépartementale des Routes (MC DIR) started installing bad weather-specific variable messag