Skip to main content

Transportation guru sceptical about V2V technology

Robert Poole, co-founder of the Reason Foundation, has worked on transportation policy for more than three decades and is an influential voice on tolling, congestion pricing and infrastructure finance. Writing in his monthly newsletter (link http://reason.org/news/show/surface-transportation-news-131) he voices his scepticism of vehicle to vehicle (V2V) and vehicle-to-infrastructure (V2I) technology which may one day allow cars to communicate with each other and with traffic infrastructure to avoid colli
September 12, 2014 Read time: 2 mins
Robert Poole, co-founder of the Reason Foundation, has worked on transportation policy for more than three decades and is an influential voice on tolling, congestion pricing and infrastructure finance.

Writing in his monthly newsletter (link http://reason.org/news/show/surface-transportation-news-131) he voices his scepticism of vehicle to vehicle (V2V) and vehicle-to-infrastructure (V2I) technology which may one day allow cars to communicate with each other and with traffic infrastructure to avoid collisions.

Poole says: “…..if we focus just on fatal crashes, we can estimate that more than half are due to driver problems that V2V would not address.”

“Full benefits would be realised only once the entire fleet is equipped, but we know that it takes about 20 years for the whole automobile fleet to be replaced as old vehicles are scrapped and replaced by new ones.”

He is also sceptical about the 20-year stream of costs. The NHTSA crash-reduction estimates are based on both V2V and V2I being implemented. He says “…..achieving the full benefits of V2I would require equipping millions of intersections with communications technology during those same 20 years, estimated in a recent GAO report to cost US$25-30,000 per installation just in capital costs. For a million installations, at US$25K each, that’s US$25 billion. That cost must be added to the estimated cost of equipping all new cars, estimated by DOT as US$350 per car. There are about 254 million registered vehicles, so the cost of equipping them all, over 20 years, would be about $89 billion. So the total capital cost would be US$114 billion.”

“As a lifelong fan of technology, with two engineering degrees from MIT, I’m not saying V2V is a bad idea. I’m simply pointing out that the benefit/cost case for it has not yet been made, and a that a great many other questions have not yet been seriously addressed.”

Related Content

  • Innovia & The Ray feel the pulse
    March 15, 2022
    Getting drivers to slow down and space themselves safely on the road is a problem – but a collaboration between Innovia Technology and The Ray may have found a new way to do it
  • Nothing basic about universal basic mobility
    May 5, 2022
    The concept of universal basic mobility is here: but Shared-Use Mobility Center CEO Benjamin de la Peña tells Ben Spencer that such schemes may not be looking at the right targets
  • Dutch survey shows drivers are in favour of road user charging
    January 16, 2012
    'Keep it simple, stupid' is an oft-forgotten axiom but in terms of road user charging it is entirely appropriate. So says the ANWB's Ferry Smith. A couple of decades ago, it might have been largely true that the technology aspects of advanced road infrastructure were the main obstacles to deployment. However, 20 years or more of development have led to a situation where such 'obstacles' are often no more than a political fig-leaf. Area-wide Road User Charging (RUC) is a case in point; speak candidly to syst
  • The control room revolution - LCD screens and IP technology
    July 17, 2012
    Coming soon to a screen near you: Brady O. Bruce and John Stark of Jupiter Systems discuss trends in control room technologies. Perhaps the single most important trend in the control room environment over the last 12-18 months has been the accelerated move towards the adoption of flat-screen Liquid Crystal Display (LCD) technology. Having made their presence felt in the home environment, where they continue to replace outdated cathode ray tube-based technology, LCDs have reached the point where their perfor