Skip to main content

Cooperative driving will become common by 2020, say researchers

The international Celtic Plus Co-operative Mobility Services of the Future (CoMoSeF) project which, involved the development of data exchange between vehicles and infrastructure, has just presented its findings. The resulting communication system provides drivers with real time information on road weather, road conditions and incidents. During the project a cooperative roadside weather monitoring station run by the Finnish Meteorological Institute relays the latest reports – and weather updates covering
July 1, 2015 Read time: 3 mins
The international Celtic Plus Co-operative Mobility Services of the Future (CoMoSeF) project which, involved the development of data exchange between vehicles and infrastructure, has just presented its findings. The resulting communication system provides drivers with real time information on road weather, road conditions and incidents.

During the project a cooperative roadside weather monitoring station run by the Finnish Meteorological Institute relays the latest reports – and weather updates covering larger road areas – to vehicles in the vicinity, using short-range WLAN-based ITS-G5 technology and the mobile phone network. This data is received by a vehicle system developed by 814 VTT Technical Research Centre of Finland. The system can receive multichannel data either via ITS-G5 mediating between vehicles, or the mobile phone network. The switch from one signal reception technology to another is so fast that there are no breaks in contact with the station.

Data transfer techniques of this kind, which seamlessly combine several radio systems, have recently emerged as a potential model for the ITS solutions of the future.

”As it proliferates, cooperative driving based on communication and data exchange between vehicles and road network systems will noticeably improve traffic safety,” says Johan Scholliers principal scientist at VTT.

Cooperative traffic systems will extend the electronic horizon of vehicles, so that drivers can prepare in advance for hazards which they know are lurking behind corners. This will help drivers and vehicles to anticipate traffic more effectively and to decide accordingly on issues such as the right speed and choice of route.

These solutions represent a step towards automated, smart traffic. It is predicted that cooperative driving will be part of everyday life by the 2020s. One objective which is likely to accelerate uptake lies in markedly lowering the price of the required vehicle infrastructure.

One of the project's test sites has been the Hervanta feeder road and E63 exit ramp close to Tampere, where a cooperative road side unit with camera and laser scanner has been installed on the ramp for fog surveillance purposes. Another station relaying weather data to vehicles has been installed along the E75 road south of Sodankylä town centre.

In addition to Finland, intelligent traffic solutions and services have been developed and tested under the CoMoSeF project in France, Luxembourg, Romania, Spain, Turkey and South Korea, where road traffic faces different challenges to those of Finland.

The three-year CoMoSeF project was led by the Tampere company DDS/Mobisoft which, in addition to project coordination, gathers real-time traffic information from taxis in the city and relays processed traffic and road condition information to in-vehicle devices in taxis. Finnish participants included the Finnish Meteorological Institute, VTT, Infotripla, Taipale Telematics and Centria. There were also enterprises and research institutions from six other countries: France, Spain, Luxembourg, Romania, Turkey and South Korea.

For more information on companies in this article

Related Content

  • ProPart AV trial crosses the line
    March 25, 2020
    The perceived safety benefits of autonomous vehicles can only be realised with precise positioning. Ben Spencer reports from Sweden on work by a European consortium which aims to use the technology to allow a truck to carry out an automated lane change
  • TTI, TxDOT to test connected vehicle technology
    January 9, 2015
    Texas A&M Transportation Institute (TTI) has teamed up with the Texas Department of Transportation (TxDOT) to undertake a four-year project to test connected vehicle technology on a portion of I35 in the state. Funded by a US Department of Transportation (USDOT) grant, the US$2 million project, called I-35 Connected Work Zone, will initially focus on improving freight movement along the construction corridor by providing long-haul trucks a steady stream of traveller information through on-board devices c
  • German cars learning US traffic regulations
    September 19, 2014
    Mercedes-Benz is expanding its research activities in the US, now that it has received a licence permitting it to test autonomous vehicles on public roads in California. The company says it now plans to take autonomous driving to a new level in the US, despite the differences between US and German traffic systems, which it says are vast. While motoring in Germany commonly takes place on narrow roads, the roads in the USA are frequently wider and may have more than six or even eight lanes. Traffic lights
  • Fixed or wireless communications?
    February 3, 2012
    Optelecom-NKF's Coen Hooghiemstra considers the play-offs and pay-offs involved when deciding whether to go for fixed or wireless communications solutions