Skip to main content

Cooperative driving will become common by 2020, say researchers

The international Celtic Plus Co-operative Mobility Services of the Future (CoMoSeF) project which, involved the development of data exchange between vehicles and infrastructure, has just presented its findings. The resulting communication system provides drivers with real time information on road weather, road conditions and incidents. During the project a cooperative roadside weather monitoring station run by the Finnish Meteorological Institute relays the latest reports – and weather updates covering
July 1, 2015 Read time: 3 mins
The international Celtic Plus Co-operative Mobility Services of the Future (CoMoSeF) project which, involved the development of data exchange between vehicles and infrastructure, has just presented its findings. The resulting communication system provides drivers with real time information on road weather, road conditions and incidents.

During the project a cooperative roadside weather monitoring station run by the Finnish Meteorological Institute relays the latest reports – and weather updates covering larger road areas – to vehicles in the vicinity, using short-range WLAN-based ITS-G5 technology and the mobile phone network. This data is received by a vehicle system developed by 814 VTT Technical Research Centre of Finland. The system can receive multichannel data either via ITS-G5 mediating between vehicles, or the mobile phone network. The switch from one signal reception technology to another is so fast that there are no breaks in contact with the station.

Data transfer techniques of this kind, which seamlessly combine several radio systems, have recently emerged as a potential model for the ITS solutions of the future.

”As it proliferates, cooperative driving based on communication and data exchange between vehicles and road network systems will noticeably improve traffic safety,” says Johan Scholliers principal scientist at VTT.

Cooperative traffic systems will extend the electronic horizon of vehicles, so that drivers can prepare in advance for hazards which they know are lurking behind corners. This will help drivers and vehicles to anticipate traffic more effectively and to decide accordingly on issues such as the right speed and choice of route.

These solutions represent a step towards automated, smart traffic. It is predicted that cooperative driving will be part of everyday life by the 2020s. One objective which is likely to accelerate uptake lies in markedly lowering the price of the required vehicle infrastructure.

One of the project's test sites has been the Hervanta feeder road and E63 exit ramp close to Tampere, where a cooperative road side unit with camera and laser scanner has been installed on the ramp for fog surveillance purposes. Another station relaying weather data to vehicles has been installed along the E75 road south of Sodankylä town centre.

In addition to Finland, intelligent traffic solutions and services have been developed and tested under the CoMoSeF project in France, Luxembourg, Romania, Spain, Turkey and South Korea, where road traffic faces different challenges to those of Finland.

The three-year CoMoSeF project was led by the Tampere company DDS/Mobisoft which, in addition to project coordination, gathers real-time traffic information from taxis in the city and relays processed traffic and road condition information to in-vehicle devices in taxis. Finnish participants included the Finnish Meteorological Institute, VTT, Infotripla, Taipale Telematics and Centria. There were also enterprises and research institutions from six other countries: France, Spain, Luxembourg, Romania, Turkey and South Korea.

For more information on companies in this article

Related Content

  • EU project to make urban freight management more sustainable
    February 1, 2012
    Urban freight policies are becoming more common in European cities and regions. However, it is still difficult to evaluate and transfer the knowledge gained from the different city logistics measures implemented by local authorities. The SUGAR project aims to tackle this by establishing a systematic approach towards best practices identification and assessment, and by developing urban freight plans and actions.
  • Texas DOT, institutes demonstrate wrong way driving alert system
    August 21, 2017
    In a joint partnership with the Texas Department of Transportation (TxDOT), Texas A&M Transportation Institute (TTI) and Southwest Research Institute (SwRI) are researching wrong-way driving, reports the Houston Chronicle. Almost 240 wrong way crashes happen each year in the state, according to the TTI. More than half of those resulted in a fatality crash. Researchers said most of those crashes occur at night, with alcohol impairment often a factor. On freeways, the most common way for someone to drive t
  • Texas DOT, institutes demonstrate wrong way driving alert system
    August 21, 2017
    In a joint partnership with the Texas Department of Transportation (TxDOT), Texas A&M Transportation Institute (TTI) and Southwest Research Institute (SwRI) are researching wrong-way driving, reports the Houston Chronicle. Almost 240 wrong way crashes happen each year in the state, according to the TTI. More than half of those resulted in a fatality crash. Researchers said most of those crashes occur at night, with alcohol impairment often a factor. On freeways, the most common way for someone to drive t
  • Reducing detection costs benefits intersection management
    February 3, 2012
    The continuing, favourable performance-versus-cost situation concerning detection and monitoring technologies is driving the proliferation of intelligence across road networks. The effective and safe management of intersections is a focus for network operators and systems manufacturers alike. The most complicated of road environments, and statistically among the least safe, intersections enjoy particular emphasis in longer-term work on cooperative infrastructure solutions. However there are current developm