Skip to main content

Ethernet to tap new synergies for connected cars

Ethernet could be catalyst for bringing the automotive industry a step closer to connected vehicles. The latest report from Frost and Sullivan indicates that the need to integrate multiple consumer electronic devices into the car offering connected services and maintaining brand identity has led to a situation where original equipment manufacturers (OEMs) are shifting toward higher connectivity options which could power prioritised and personalised services, catering to varied consumer needs. With the parad
July 25, 2013 Read time: 3 mins
Ethernet could be catalyst for bringing the automotive industry a step closer to connected vehicles

The latest report from Frost & Sullivan indicates that the need to integrate multiple consumer electronic devices into the car offering connected services and maintaining brand identity has led to a situation where original equipment manufacturers (OEMs) are shifting toward higher connectivity options which could power prioritised and personalised services, catering to varied consumer needs. With the paradigm shift toward connected cars and associated services such as automotive-app stores and connected location based services, there is an ever-increasing need for higher data transfer bandwidths. Ethernet could serve as the backbone to the electronic architecture connecting domains and sub networks that require higher bandwidth and also cater to consumers’ need for connectivity.

Frost and Sullivan estimates that the total number of Ethernet ports globally will reach 300 million by 2020. The number of nodes or ports is expected to range from more than 100 in luxury cars, 50–60 in mass market segment cars, and less than ten nodes in entry level cars by 2020.

“Ethernet could be the catalyst for bringing the automotive industry a step closer to connected vehicles,” says Frost and Sullivan senior research analyst, Divya Krishnamurthy. “With its capability to simplify the networking architecture, higher uptake rates are expected in the near future.”

The bandwidth requirement for in-vehicle electronic applications, such as camera-assisted parking with advanced driver assistance systems (ADAS), lane departure warning systems, collision avoidance systems, and traffic light recognition is higher, in the range over 100Mbps. The number of nodes to be connected therefore is also higher. Most importantly, proven IP-based Ethernet technology enables OEMs to use a single-network platform by significantly reducing the connectivity cost and cabling weight. It is scalable and flexible enough to be used in multiple vehicle segments.

“OEMs are now working to bring in Ethernet into their future models that will fulfil all kinds of telematics and infotainment demands of end users,” says Ms Krishnamurty. “OEMs can benefit from the use of Ethernet to reduce connectivity cost and weight due to lighter cabling leading to better fuel economy.”

“It is also indicative that OEMs such as 1731 BMW, 1684 Hyundai, 3883 Jaguar Land Rover, 948 General Motors, American 1683 Honda and 1900 PSA Peugeot Citroën are also part of the open alliance (one-pair Ethernet), a special interest group (SIG) to use Ethernet as a standard solution for infotainment and telematics,” concludes Ms Krishnamurthy.

For more information on companies in this article

Related Content

  • Adopting universal technology platforms for tolling
    July 16, 2012
    Dave Marples of Technolution argues that the continuing development of tolling-specific onboard equipment is leading us up a blind alley. We should, he says, be looking to realise universal platforms with universal application. The near-future automobile contains information systems of a sophistication to rival a jet airliner of only a few years ago, yet is 'piloted' by a considerably less well-trained individual of highly variable mental and physical capacity, and operated in a hostile, unpredictable and p
  • Driverless vehicles will cause changes in society
    May 31, 2013
    Paul Godsmark gives his views on what the advent of autonomous vehicles would mean for the wider society. Further to your article ‘Driver not required…’ in the Jan/Feb edition of ITS International which gave some great background to autonomous road vehicle (ARVs), I feel that the bigger picture is needed to aid understanding. There is a ‘technology freight train’ heading our way that is going to transform our roadways but we don’t seem to be aware of it and, therefore, are in no hurry to react.
  • Study - Move to digital railway systems fuels need for big data
    March 13, 2015
    New analysis from Frost & Sullivan, Strategic Analysis of Big Data in Rapid Transit, finds that global annual rail investment in big data will reach over US$2.14 billion by 2021. Investments will grow at a minimum of 60.3 per cent. The study covers hardware, big data distributions, data management components, analytics and visualisations, and services. The global rail market offers huge opportunities for big data technology providers. As some of the signalling equipment on rail networks is nearly 80 years o
  • Long-range electric vehicles ‘set to gain popularity globally’
    April 22, 2015
    According to new analysis from Frost & Sullivan, the global electric vehicles (EV) market has made huge progress, with more than 55 models now available globally. Currently, over 70 per cent of the models on the market are battery EVs (BEVs) and approximately 25 per cent are plug-in hybrid EVs (PHEVs). Nevertheless, the number of PHEVs is likely to increase over the next three to four years. The market will see greater demand for longer-range vehicles that allow customers to drive up to and past the pure EV