Skip to main content

Ethernet to tap new synergies for connected cars

Ethernet could be catalyst for bringing the automotive industry a step closer to connected vehicles. The latest report from Frost and Sullivan indicates that the need to integrate multiple consumer electronic devices into the car offering connected services and maintaining brand identity has led to a situation where original equipment manufacturers (OEMs) are shifting toward higher connectivity options which could power prioritised and personalised services, catering to varied consumer needs. With the parad
July 25, 2013 Read time: 3 mins
Ethernet could be catalyst for bringing the automotive industry a step closer to connected vehicles

The latest report from Frost & Sullivan indicates that the need to integrate multiple consumer electronic devices into the car offering connected services and maintaining brand identity has led to a situation where original equipment manufacturers (OEMs) are shifting toward higher connectivity options which could power prioritised and personalised services, catering to varied consumer needs. With the paradigm shift toward connected cars and associated services such as automotive-app stores and connected location based services, there is an ever-increasing need for higher data transfer bandwidths. Ethernet could serve as the backbone to the electronic architecture connecting domains and sub networks that require higher bandwidth and also cater to consumers’ need for connectivity.

Frost and Sullivan estimates that the total number of Ethernet ports globally will reach 300 million by 2020. The number of nodes or ports is expected to range from more than 100 in luxury cars, 50–60 in mass market segment cars, and less than ten nodes in entry level cars by 2020.

“Ethernet could be the catalyst for bringing the automotive industry a step closer to connected vehicles,” says Frost and Sullivan senior research analyst, Divya Krishnamurthy. “With its capability to simplify the networking architecture, higher uptake rates are expected in the near future.”

The bandwidth requirement for in-vehicle electronic applications, such as camera-assisted parking with advanced driver assistance systems (ADAS), lane departure warning systems, collision avoidance systems, and traffic light recognition is higher, in the range over 100Mbps. The number of nodes to be connected therefore is also higher. Most importantly, proven IP-based Ethernet technology enables OEMs to use a single-network platform by significantly reducing the connectivity cost and cabling weight. It is scalable and flexible enough to be used in multiple vehicle segments.

“OEMs are now working to bring in Ethernet into their future models that will fulfil all kinds of telematics and infotainment demands of end users,” says Ms Krishnamurty. “OEMs can benefit from the use of Ethernet to reduce connectivity cost and weight due to lighter cabling leading to better fuel economy.”

“It is also indicative that OEMs such as 1731 BMW, 1684 Hyundai, 3883 Jaguar Land Rover, 948 General Motors, American 1683 Honda and 1900 PSA Peugeot Citroën are also part of the open alliance (one-pair Ethernet), a special interest group (SIG) to use Ethernet as a standard solution for infotainment and telematics,” concludes Ms Krishnamurthy.

For more information on companies in this article

Related Content

  • Blockchain: the next big thing for ITS? Really?
    October 8, 2018
    Everyone’s heard of blockchain – but most people are less sure about what it really is, and how it might be used in transportation. Andrew Williams peers into cyberspace to find some answers. A growing number of organisations in the ITS industry are exploring how blockchain technology could be used for ITS and mobility applications. So, what exactly is blockchain technology? What are the key current and potential applications in the mobility and ITS sector? And what practical benefits might it bring?
  • Siemens to equip StreetScooter EV with innovative electronics and software
    July 30, 2014
    Siemens' central research department and electric vehicle manufacturer StreetScooter are to equip an electric car with an innovative electronic and software architecture as part of the Robust and Reliant Automotive Computing Environment for Future eCars (RACE) project. For the first time ever, the architecture will make it possible to retrofit functions such as electrical brakes and systems such as lane-keeping assistants using a plug-and-play process like on home PCs. The two companies plan to incorpora
  • Increased automation is already improving road safety
    April 20, 2017
    Richard Cuerden considers how many of the technologies developed as part of a move toward autonomous vehicles are already being deployed as ADAS improve road safety. The drive to create autonomous vehicles has caused a re-evaluation of what is needed to safely navigate today’s roads and the development of systems that can replace the driver in many scenarios. However, many manufacturers are not waiting for ‘tomorrow’ and are already incorporating these systems in their new cars as Advanced Driver Assistanc
  • IBM, Honda, and PG&E enable smarter charging for EVs
    April 17, 2012
    IBM has teamed with American Honda Motor Company and Pacific Gas and Electric Company on a new pilot project that will allow communication between electric vehicles (EVs) and the power grid. This project will demonstrate and test an electric vehicle's ability to receive and respond to charge instructions based on the grid condition and the vehicle's battery state. With visibility into charging patterns, energy providers will have the ability to more effectively manage charging during peak hours and create c