Skip to main content

TRL develops eCall test proposals ahead of mandatory roll-out in 2018

TRL, the UK’s Transport Research Laboratory, has developed proposals for technical requirements and test procedures for the European type-approval of eCall in-vehicle systems. The draft proposals, which were developed for the European Commission, provide recommendations on the safety requirements for eCall systems in preparation of the mandatory European roll-out in 2018. Following the publication of eCall Regulation (EU) 2015/758 in May 2015, TRL was commissioned by the European Commission to develop dr
November 11, 2015 Read time: 3 mins
491 TRL, the UK’s Transport Research Laboratory, has developed proposals for technical requirements and test procedures for the European type-approval of eCall in-vehicle systems. The draft proposals, which were developed for the European Commission, provide recommendations on the safety requirements for eCall systems in preparation of the mandatory European roll-out in 2018.

Following the publication of eCall Regulation (EU) 2015/758 in May 2015, TRL was commissioned by the European Commission to develop draft proposals for the delegated acts of the regulation, which will set out the detailed technical requirements and test procedures for eCall systems. The proposals seek to set minimum standards for eCall systems in Europe to ensure that all systems work as intended, even after a severe collision.

As part of the project, TRL analysed and developed test requirements and procedures for seven technical aspects including: resistance of eCall systems to severe crashes (sled test); full scale impact test; crash resistance of audio equipment; co-existence of third party services (TPS); automatic triggering mechanism; in-vehicle system self-test and privacy and data protection.

Twelve telematics units were used for experiments in the dedicated deceleration sled test element and operability verification test procedures, which set out to measure the mechanical resistance of eCall systems to severe crashes at accelerations up to 100 g. These units were designed, produced and provided to TRL by Stadium United Wireless and included the telematics control module (ECU), containing the printed circuit board with GSM and GNSS modules, SIM card holder and SIM card, capacitors and other electronic components.

The test programme was designed and carried out by TRL using its in-house high-energy test sled facility, which uses a bungee propulsion system and deceleration elements to achieve severe deceleration levels. A physical and electronic inspection, via current consumption and GPS/GSM functionality, was carried out by Stadium United Wireless at the end of the tests which concluded that all samples remained undamaged, even after being subjected to a deceleration of over 100 g.

Matthias Seidl, senior vehicle safety researcher at TRL, commented: “Our in-house test sled allows us to simulate collisions with peak decelerations considerably higher than most current vehicle tests. These high levels are necessary to ensure that eCall systems are still able to make an emergency call, even after a severe crash.”

“The results of the tests enabled us to develop stringent, but practical, test procedures for eCall systems. This will ensure that poor system designs, which could jeopardise the safety of road users, will not be allowed onto the European market. The results can also be used to help shape the technical discussions at an international level in order to ensure that the same level of protection is provided to road users around the world. In fact, the suggested European standards have also been proposed to the United Nations working group on automatic emergency call systems.”

For more information on companies in this article

Related Content

  • Avoiding the call of the wild
    June 29, 2018
    Hitting an animal on a rural road can be fatal for all parties involved – but detecting and avoiding them requires clever technology. Andrew Williams carefully scans the horizon for details. Wildlife-vehicle collisions are an ever-present threat in rural areas around the world, and there is certainly nothing funny about suddenly finding an angry moose in your headlights on a sharp bend. A variety of detection and avoidance systems are currently in use or under development to help prevent your vehicle being
  • Developing Mexico's ITS standards and infrastructure
    February 28, 2013
    Promoting open market conditions for ITS deployment remains a major part of Mexico’s recent infrastructure modernization program. Travis P Dunn, partner at D’Artagnan Consulting, looks at the progress so far. In the past six years, Mexico has embarked on an ambitious infrastructure modernization program, calling for the construction and improvement of more than 19,000km of road infrastructure and the deployment of advanced technologies that improve safety, efficiency, and convenience for road users. One of
  • Boom times for SRL
    October 29, 2021
    SRL also offers the lighter weight Instaboom Lite or use on short duration operations,
  • Safelane automates work zone perimeter guarding
    June 12, 2015
    The safety of workers during road closures and working alongside, or above, live lanes is becoming an automated process. Ten workers suffered major injuries while working on or near motorways and major A roads in England in 2013, and between 2009 and 2013 eight had been killed. It was against that background that the first commercial application Safelane, the automated traffic management system designed to detect work zone incursions, was carried out during the temporary closure of a motorway.