Skip to main content

TRL develops eCall test proposals ahead of mandatory roll-out in 2018

TRL, the UK’s Transport Research Laboratory, has developed proposals for technical requirements and test procedures for the European type-approval of eCall in-vehicle systems. The draft proposals, which were developed for the European Commission, provide recommendations on the safety requirements for eCall systems in preparation of the mandatory European roll-out in 2018. Following the publication of eCall Regulation (EU) 2015/758 in May 2015, TRL was commissioned by the European Commission to develop dr
November 11, 2015 Read time: 3 mins
491 TRL, the UK’s Transport Research Laboratory, has developed proposals for technical requirements and test procedures for the European type-approval of eCall in-vehicle systems. The draft proposals, which were developed for the European Commission, provide recommendations on the safety requirements for eCall systems in preparation of the mandatory European roll-out in 2018.

Following the publication of eCall Regulation (EU) 2015/758 in May 2015, TRL was commissioned by the European Commission to develop draft proposals for the delegated acts of the regulation, which will set out the detailed technical requirements and test procedures for eCall systems. The proposals seek to set minimum standards for eCall systems in Europe to ensure that all systems work as intended, even after a severe collision.

As part of the project, TRL analysed and developed test requirements and procedures for seven technical aspects including: resistance of eCall systems to severe crashes (sled test); full scale impact test; crash resistance of audio equipment; co-existence of third party services (TPS); automatic triggering mechanism; in-vehicle system self-test and privacy and data protection.

Twelve telematics units were used for experiments in the dedicated deceleration sled test element and operability verification test procedures, which set out to measure the mechanical resistance of eCall systems to severe crashes at accelerations up to 100 g. These units were designed, produced and provided to TRL by Stadium United Wireless and included the telematics control module (ECU), containing the printed circuit board with GSM and GNSS modules, SIM card holder and SIM card, capacitors and other electronic components.

The test programme was designed and carried out by TRL using its in-house high-energy test sled facility, which uses a bungee propulsion system and deceleration elements to achieve severe deceleration levels. A physical and electronic inspection, via current consumption and GPS/GSM functionality, was carried out by Stadium United Wireless at the end of the tests which concluded that all samples remained undamaged, even after being subjected to a deceleration of over 100 g.

Matthias Seidl, senior vehicle safety researcher at TRL, commented: “Our in-house test sled allows us to simulate collisions with peak decelerations considerably higher than most current vehicle tests. These high levels are necessary to ensure that eCall systems are still able to make an emergency call, even after a severe crash.”

“The results of the tests enabled us to develop stringent, but practical, test procedures for eCall systems. This will ensure that poor system designs, which could jeopardise the safety of road users, will not be allowed onto the European market. The results can also be used to help shape the technical discussions at an international level in order to ensure that the same level of protection is provided to road users around the world. In fact, the suggested European standards have also been proposed to the United Nations working group on automatic emergency call systems.”

For more information on companies in this article

Related Content

  • Car makers test next generation connected car communications technology
    July 11, 2016
    Audi, Deutsche Telekom, Huawei, Toyota Motor Europe and other car manufacturers are currently carrying out technical field trials on testing LTE-Vehicular (LTE-V), which is seen as a potential enabler for road safety applications and traffic control services as well as emerging automated driving use. The tests, which are being carried out on the A9 motorway in Germany, with the objective of assessing the performance of LTE-V for connected vehicle communications during its standardisation process. LTE
  • Major growth predicted for OEM embedded telematics
    September 5, 2014
    According to a new research report by Berg Insight, shipments of OEM embedded telematics systems worldwide are forecasted to grow from 8.4 million units in 2013 at a compound annual growth rate (CAGR) of 30.6 per cent to reach 54.5 million units in 2020. Moreover, Berg Insight forecasts that the number of cars sold worldwide equipped with head-units featuring handset-based telematics capabilities will grow from 7 million in 2013 to 68.5 million in 2020.
  • Transatel to supply secure connection for FCA on board unit
    February 27, 2018
    Transatel will provide mobile network services for Fiat Chrysler Automobile’s (FCA’s) on-board telematics units, Mopar Connect, in the European Union region following a competitive tender. These units will offer apps and services including fleet management, remote control, predictive maintenance, crash assistance and stolen vehicle tracking. Through the agreement, Transatel will supply FCA with machine-to-machine connectivity with its Mobile Network Operator profile based on its SIM 901 technology. The
  • Does ADAS create as many problems as it solves
    September 23, 2014
    Victoria Banks and Neville Stanton [1] of Southampton University’s Transportation Research Group examine the real impact of creeping driver automation. Safety research suggests that 90% of accidents are thought to be a result of driver inattentiveness to unpredictable or incomplete information and the vision is that highly automated vehicles will lead to accident-free driving in the future.