Skip to main content

GSSI partners with MIT Lincoln Laboratory to develop LGPR for autonomous vehicles

US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.
September 11, 2017 Read time: 2 mins
US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with 2024 Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.

 
The agreement builds on GSSI’s new engineering initiative, which focuses on using GPR to solve difficult problems that cannot be solved with any other technologies. Led by newly appointed Vice President of Research and Development, David Cist, an expert engineering team is focusing on commercialising the new technology.
 
Engineers at MIT Lincoln Laboratory, who developed LGPR, have demonstrated that features in soil layers, rocks, and road bedding can be used to localize vehicles to centimetre-level accuracy. The LGPR technology has been tested for lane keeping even when snow, fog, or dust obscures above-ground features.
 
The LGPR sensor uses high-frequency radar reflections of underground features to generate a baseline map of a road's subsurface. Whenever an LGPR vehicle drives along a road, the data can be used as a reference map. On subsequent passes the LGPR equipped vehicle compares its current map against the reference map to create an estimate of the vehicle's location. This localisation has been demonstrated to be accurate to within a few centimetres, in real-time and at highway speeds, even at night in snow-storms.

For more information on companies in this article

Related Content

  • Will you allow winter weather to derail your transit operations?
    June 8, 2021
    JW Speaker's SmartHeat allows transportation managers to improve public transit safety
  • Volvo and Nvidia to develop AV decision-making system
    July 16, 2019
    Volvo has partnered with Nvidia to develop a decision-making system which it says will allow autonomous commercial vehicles to operate safely on public roads. The solution will be built on Nvidia’s full software stack for sensor processing, perception, map localisation and path planning to enable a range of autonomous driving applications such as public transit and freight transport. The contract includes accelerated computing technology in the data centre for training deep neural networks, large-scale si
  • South Korea, UK to share autonomous car technologies
    August 15, 2017
    South Korea’s IT Convergence Institute of North Gyeongsang Province and UK company Westfield Sportscars have agreed to share technologies and expertise in autonomous cars, ranging from the development of self-driving vehicles and high-precision maps to safety management. The agreement is a follow-up to the partnership to introduce autonomous vehicles signed in November last year. Under the latest agreement, the two sides will share not only technical sectors including self-driving cars and high-precision ma
  • TRL and GOBOTiX team up on vehicle research
    May 28, 2014
    The UK’s Transport Research Laboratory (TRL) has teamed up with robotic technology consultants GOBOTiX to create a vehicle that will be used to test a variety of advanced vehicle functionality. TRL, with a long history in studies of the development and impact of advanced vehicle technologies, has donated a Toyota Prius to GOBOTiX, who will adapt the vehicle for innovative systems research. The first step will be for GOBOTiX to install drive-by-wire systems to replace mechanical linkages and actuators for