Skip to main content

GSSI partners with MIT Lincoln Laboratory to develop LGPR for autonomous vehicles

US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.
September 11, 2017 Read time: 2 mins
US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with 2024 Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.

 
The agreement builds on GSSI’s new engineering initiative, which focuses on using GPR to solve difficult problems that cannot be solved with any other technologies. Led by newly appointed Vice President of Research and Development, David Cist, an expert engineering team is focusing on commercialising the new technology.
 
Engineers at MIT Lincoln Laboratory, who developed LGPR, have demonstrated that features in soil layers, rocks, and road bedding can be used to localize vehicles to centimetre-level accuracy. The LGPR technology has been tested for lane keeping even when snow, fog, or dust obscures above-ground features.
 
The LGPR sensor uses high-frequency radar reflections of underground features to generate a baseline map of a road's subsurface. Whenever an LGPR vehicle drives along a road, the data can be used as a reference map. On subsequent passes the LGPR equipped vehicle compares its current map against the reference map to create an estimate of the vehicle's location. This localisation has been demonstrated to be accurate to within a few centimetres, in real-time and at highway speeds, even at night in snow-storms.

For more information on companies in this article

Related Content

  • Klimator looks Ahead to winter weather
    September 15, 2022
    Swedish firm's software links with floating car data to accurately detect road conditions
  • Japan to develop 3-D maps for self-driving cars in time for Tokyo Olympics
    September 13, 2016
    A joint venture in Japan will begin creating high-definition 3-D maps for self-driving cars in September as part of a government effort to have such vehicles on the road by 2020, when the Tokyo Summer Olympics will be held, reports Nikkei. Mitsubishi Electric company Dynamic Map Planning, mapmaker Zenrin and nine Japanese auto makers will begin creating high definition 3D maps for self-driving cars, digitally charting the country's key expressways by driving a vehicle loaded with special surveying equipm
  • Bluetooth speed and travel data collection shows cost savings
    February 2, 2012
    Houston TranStar is using Bluetooth sensors to collect speed and travel data in a project which is already demonstrating significant cost savings
  • Karamba Security appoints executives and expands advisory board
    March 29, 2018
    Israel-based cybersecurity provider Karamba Security has appointed two executives to its management team and two automotive industry experts to its advisory board to help meet the market demand for its autonomous and connected car solutions. Guy Sagy, a decorated officer and cyber security architect with Unit 8200, has been appointed security chief technology officer while one of the company’s co-founders, Assaf Harel, is now chief scientist. In addition, Amir Einav has been named vice president of market