Skip to main content

GSSI partners with MIT Lincoln Laboratory to develop LGPR for autonomous vehicles

US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.
September 11, 2017 Read time: 2 mins
US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with 2024 Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.

 
The agreement builds on GSSI’s new engineering initiative, which focuses on using GPR to solve difficult problems that cannot be solved with any other technologies. Led by newly appointed Vice President of Research and Development, David Cist, an expert engineering team is focusing on commercialising the new technology.
 
Engineers at MIT Lincoln Laboratory, who developed LGPR, have demonstrated that features in soil layers, rocks, and road bedding can be used to localize vehicles to centimetre-level accuracy. The LGPR technology has been tested for lane keeping even when snow, fog, or dust obscures above-ground features.
 
The LGPR sensor uses high-frequency radar reflections of underground features to generate a baseline map of a road's subsurface. Whenever an LGPR vehicle drives along a road, the data can be used as a reference map. On subsequent passes the LGPR equipped vehicle compares its current map against the reference map to create an estimate of the vehicle's location. This localisation has been demonstrated to be accurate to within a few centimetres, in real-time and at highway speeds, even at night in snow-storms.

For more information on companies in this article

Related Content

  • NAMC advances autonomous vehicle testing for US soldiers
    June 5, 2018
    Over the next year, American soldiers will be testing autonomous vehicles as part of a competition by National Advanced Mobility Consortium (NAMC). The systems to be tested come from four shortlisted companies: a group compiled of Applied Research Associates, Neya Systems and Polaris; General Dynamics Land Systems; HDT Expeditionary Systems; Howe & Howe Technologies. NAMC chose the companies after testing ten concepts under the Squad Multipurpose Equipment Transport vehicles project. Each company will
  • Pöyry takes major role in Helsinki City rail loop design
    January 10, 2014
    In a contract worth US$6.4 million, Finnish engineering firm Pöyry is to design the Vauhtitie underpass bridge, the opening of the nearby railway tunnel, and the road layout of the Vauhtitie area of Helsinki for the Helsinki City rail loop. In addition, Pöyry's water maintenance network designers will design the pipe and cable transfers required by the rail loop. Pöyry architects are also involved in the design of the Hakaniemi station and its road tunnels. The Helsinki City rail loop is a commuter rail
  • US updates ITS strategy for Connected Vehicle deployment
    March 16, 2015
    Jon Masters looks at the USDOT’s new ITS Strategic Plan for the next five years. Emphasis and direction for the next five years of Government led ITS research in the United States has been framed within a new ITS Strategic Plan. The US Department for Transportation’s (USDOT) ITS Joint Program Office (JPO) published the report at the tail end of 2014 after concluding a two-year ITS industry consultation process. The Plan identifies a vision to transform the way society moves and the ITS JPO’s aim of advancin
  • Toyota to fit selected new cars with advanced automotive safety system
    November 28, 2014
    Beginning in 2015, some of Toyota Motor Corporation's new models will be compatible with advanced vehicle-infrastructure cooperative systems that use a wireless frequency reserved for intelligent transport systems (ITS). This compatibility will be offered as an option for the Toyota Safety Sense P active safety package that will be made available in 2015 on selected new models sold in Japan. The systems will use the dedicated ITS frequency of 760 MHz for road-to-vehicle and vehicle-to-vehicle communicati