Skip to main content

GSSI partners with MIT Lincoln Laboratory to develop LGPR for autonomous vehicles

US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.
September 11, 2017 Read time: 2 mins
US-based Geophysical Survey Systems (GSSI), manufacturer of ground penetrating radar (GPR) equipment, has entered into a licensing agreement with 2024 Massachusetts Institute of technology (MIT) Lincoln Laboratory to build and sell commercial prototypes of their localised ground penetrating radar (LGPR) system, which helps autonomous vehicles navigate by using subsurface geology. The partnership will make prototype systems available to the self-driving vehicle industry.

 
The agreement builds on GSSI’s new engineering initiative, which focuses on using GPR to solve difficult problems that cannot be solved with any other technologies. Led by newly appointed Vice President of Research and Development, David Cist, an expert engineering team is focusing on commercialising the new technology.
 
Engineers at MIT Lincoln Laboratory, who developed LGPR, have demonstrated that features in soil layers, rocks, and road bedding can be used to localize vehicles to centimetre-level accuracy. The LGPR technology has been tested for lane keeping even when snow, fog, or dust obscures above-ground features.
 
The LGPR sensor uses high-frequency radar reflections of underground features to generate a baseline map of a road's subsurface. Whenever an LGPR vehicle drives along a road, the data can be used as a reference map. On subsequent passes the LGPR equipped vehicle compares its current map against the reference map to create an estimate of the vehicle's location. This localisation has been demonstrated to be accurate to within a few centimetres, in real-time and at highway speeds, even at night in snow-storms.

For more information on companies in this article

Related Content

  • Agencies in pursuit of high-speed WIM accuracy
    April 20, 2017
    Alan Dron looks at where WIM is heading in the near future. As Weigh-In-Motion (WIM) systems grow in sophistication and accuracy, they are increasingly being used in more active roles to help ensure road safety through enforcement action against overweight vehicles.
  • Aurora to develop AV tech with Reinvent 
    August 3, 2021
    Aurora to apply autonomous tech to trucking and transportation 
  • Integrate systems to reduce roadside infrastructure
    January 27, 2012
    David Crawford reviews promising current developments. Instrumentation of the road infrastructure has grown to become one of the most dynamic sectors of the ITS industry. Drivers for its deployment include global concerns over the commercial and environmental pressures of traffic congestion, the importance of keeping drivers informed throughout their journeys, and the need to reduce accident rates and promote the safety of all road users, for example by enforcing traffic safety rules.
  • VW and partners to bring EV autonomous ride-hailing service to Israel
    November 2, 2018
    Volkswagen (VW), Mobileye and Champion Motors are to deploy a self-driving taxi service in Israel over the next four years. Operating under the name ‘New Mobility in Israel,’ the service is being tested as part of a Mobility as a Service (MaaS) model which uses autonomous electric vehicles (EV). Mobileye, an Intel company, will equip VW’s EVs with a level-4 autonomous vehicle kit – a driverless solution which consists of hardware, driving policy, safety software and map data. Champion Motors, an Isr