Skip to main content

Ford, MIT project measures pedestrian traffic, predict demand for electric shuttles

Ford Motor Company and the Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services. The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimate
July 28, 2016 Read time: 2 mins
278 Ford Motor Company and the 2024 Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services.

The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimately helps predict demand for the shuttles. This, in turn, helps researchers and drivers route shuttles toward areas with the highest demand to better accommodate passengers.

The researchers plan to introduce the service to a group of students and faculty beginning in September. This group will use a mobile application to hail one of three electric urban vehicles to their location and request to be dropped off at another destination on campus.

During the past five months, Ford and MIT have used LiDAR sensors and cameras mounted to the vehicles to document pedestrian flow between different points on campus. LiDAR is an efficient way to detect and localise objects from the environment surrounding the shuttles. They say the technology is much more accurate than GPS, emitting short pulses of laser light to precisely pinpoint the vehicles’ location on a map and detect the movement of nearby pedestrians and objects.

Using this data, researchers study the overall pattern of how pedestrian traffic moves across campus, which helps the researchers anticipate where the most demand for the shuttles will be at any given moment. This allows the shuttles to be carefully pre-positioned and routed to serve the MIT population as efficiently as possible.

Researchers also take into account other factors that affect pedestrian movement on MIT’s campus, such as varying weather conditions, class schedules, and the dynamic habits of students and professors across different semesters.

“The onboard sensors and cameras gather pedestrian data to estimate the flow of foot traffic,” said Ken Washington, vice president of Research and Advanced Engineering at Ford. “This helps us develop efficient algorithms that bring together relevant data. It improves mobility-on-demand services, and aids ongoing pedestrian detection and mapping efforts for autonomous vehicle research.”

For more information on companies in this article

Related Content

  • App to give real-time estimate of bus arrival time
    March 7, 2013
    Florida’s Hillsborough Area Rapid Transit Authority (HART) is testing a smartphone application that would inform passengers in real time when buses will arrive. The OneBusAway pilot project is part of HART’s ongoing effort to provide bus information on mobile devices, officials said. The system would allow users to enter a numeric code for their bus stop and receive information on the length of time before the bus reaches them. A HART survey found that more than half of 400 respondents indicated real-time i
  • Road traffic video analytics
    July 18, 2012
    RealTraffic Technologies has launched RTTNet, a new video analytics software that allows any surveillance video camera to function as an accurate and reliable traffic sensor
  • On the road again: US VMT increases
    July 27, 2020
    Steady increase in vehicle miles travelled since Easter, although there are regional variations
  • Cost Benefit: There’s still life in the RSU
    May 24, 2021
    A mixture of mobile and static roadside units may be what’s required to fulfil the needs of connected vehicle communications