Skip to main content

Ford, MIT project measures pedestrian traffic, predict demand for electric shuttles

Ford Motor Company and the Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services. The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimate
July 28, 2016 Read time: 2 mins
278 Ford Motor Company and the 2024 Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services.

The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimately helps predict demand for the shuttles. This, in turn, helps researchers and drivers route shuttles toward areas with the highest demand to better accommodate passengers.

The researchers plan to introduce the service to a group of students and faculty beginning in September. This group will use a mobile application to hail one of three electric urban vehicles to their location and request to be dropped off at another destination on campus.

During the past five months, Ford and MIT have used LiDAR sensors and cameras mounted to the vehicles to document pedestrian flow between different points on campus. LiDAR is an efficient way to detect and localise objects from the environment surrounding the shuttles. They say the technology is much more accurate than GPS, emitting short pulses of laser light to precisely pinpoint the vehicles’ location on a map and detect the movement of nearby pedestrians and objects.

Using this data, researchers study the overall pattern of how pedestrian traffic moves across campus, which helps the researchers anticipate where the most demand for the shuttles will be at any given moment. This allows the shuttles to be carefully pre-positioned and routed to serve the MIT population as efficiently as possible.

Researchers also take into account other factors that affect pedestrian movement on MIT’s campus, such as varying weather conditions, class schedules, and the dynamic habits of students and professors across different semesters.

“The onboard sensors and cameras gather pedestrian data to estimate the flow of foot traffic,” said Ken Washington, vice president of Research and Advanced Engineering at Ford. “This helps us develop efficient algorithms that bring together relevant data. It improves mobility-on-demand services, and aids ongoing pedestrian detection and mapping efforts for autonomous vehicle research.”

For more information on companies in this article

Related Content

  • Flir launches new sensor for fire detection in rail coaches
    January 25, 2017
    Flir Systems’ RSX-F sensor combines its Lepton thermal sensor with high-definition visual imaging for fire and occupancy detection as well as CCTV monitoring to provide fire detection inside rail coaches.
  • Hurdles to MaaS adoption highlighted
    January 25, 2018
    Jack Opiola talks to some MaaS advocates in the US. Cities will accommodate almost 60% of the world’s population by 2025 and technology is outpacing transportation plans and planners - putting extreme pressures upon planners and transportation systems alike. Big data, digital payments, ubiquitous communications, smartphone applications, on-demand travel and autonomous vehicles are all shredding existing transport plans. Never before has the pace of population growth and the tools to address this problem
  • Ford develops heart rate monitoring seat
    May 16, 2012
    Ford engineers have developed a car seat that can monitor a driver's heartbeat, opening the door to a wealth of health, convenience and even life-saving potential. A joint project undertaken by experts from Ford's European Research and Innovation Centre in Aachen, Germany and Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen University, the seat uses six special embedded sensors to detect electrical impulses generated by the heart.
  • Flir launches thermal fire sensor for rail coaches
    September 20, 2016
    Flir Systems is taking advantage of the Innotrans 2016 exhibition in Berlin, Germany, 20-23 September, to launch the Flir RSX-F intelligent sensor for advanced fire detection inside rail coaches. The sensor uses the Flir Lepton thermal sensor and high-definition visual imaging for fire and occupancy detection as well as CCTV monitoring. The Flir RSX-F uses a thermal sensor with on-board fire detection algorithms to detect a fire faster and more accurately than conventional methods. It detects thermal