Skip to main content

Ford, MIT project measures pedestrian traffic, predict demand for electric shuttles

Ford Motor Company and the Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services. The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimate
July 28, 2016 Read time: 2 mins
278 Ford Motor Company and the 2024 Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services.

The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimately helps predict demand for the shuttles. This, in turn, helps researchers and drivers route shuttles toward areas with the highest demand to better accommodate passengers.

The researchers plan to introduce the service to a group of students and faculty beginning in September. This group will use a mobile application to hail one of three electric urban vehicles to their location and request to be dropped off at another destination on campus.

During the past five months, Ford and MIT have used LiDAR sensors and cameras mounted to the vehicles to document pedestrian flow between different points on campus. LiDAR is an efficient way to detect and localise objects from the environment surrounding the shuttles. They say the technology is much more accurate than GPS, emitting short pulses of laser light to precisely pinpoint the vehicles’ location on a map and detect the movement of nearby pedestrians and objects.

Using this data, researchers study the overall pattern of how pedestrian traffic moves across campus, which helps the researchers anticipate where the most demand for the shuttles will be at any given moment. This allows the shuttles to be carefully pre-positioned and routed to serve the MIT population as efficiently as possible.

Researchers also take into account other factors that affect pedestrian movement on MIT’s campus, such as varying weather conditions, class schedules, and the dynamic habits of students and professors across different semesters.

“The onboard sensors and cameras gather pedestrian data to estimate the flow of foot traffic,” said Ken Washington, vice president of Research and Advanced Engineering at Ford. “This helps us develop efficient algorithms that bring together relevant data. It improves mobility-on-demand services, and aids ongoing pedestrian detection and mapping efforts for autonomous vehicle research.”

For more information on companies in this article

Related Content

  • Vivacity demos AI junction control
    March 18, 2021
    How will AI-controlled junctions help smooth the journeys of drivers – and cyclists - in urban areas? Alan Dron looks at an expanding scheme in Manchester, UK, which aims to find out
  • Velodyne applies AI to traffic monitoring 
    May 18, 2021
    Lidar-based AI traffic solution installed at multiple intersections in New Brunswick, New Jersey
  • New Flyer deploys five battery-electric buses in Utah
    September 24, 2018
    New Flyer will deploy five battery-electric buses to help improve air quality around Salt Lake City and the University of Utah campus. The Utah Transit Authority (UTA) will use three of the forty-foot buses on routes between the city and the campus while the other two will support the university’s transit shuttle on a dedicated lane. Rocky Mountain will provide power and technical support for the charging demands while Calsmart will collect data and report on vehicle performance. In addition, the Utah Of
  • Automatic signal control to prevent emergency vehicle collisions?
    March 14, 2012
    Field trials under way in Arizona promise eradication of accidents between emergency vehicles at intersections – as part of a national focus on ‘intelligent signal’ infrastructure. Collisions between police cars, ambulances and fire crews as they reach intersections at the same time, with equal priority given by all signals set on red, are as serious as they sound absurd. For emergency teams and those in need of their help, the consequences are dire. The solution could come from application of connected veh