Skip to main content

Ford, MIT project measures pedestrian traffic, predict demand for electric shuttles

Ford Motor Company and the Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services. The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimate
July 28, 2016 Read time: 2 mins
278 Ford Motor Company and the 2024 Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services.

The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimately helps predict demand for the shuttles. This, in turn, helps researchers and drivers route shuttles toward areas with the highest demand to better accommodate passengers.

The researchers plan to introduce the service to a group of students and faculty beginning in September. This group will use a mobile application to hail one of three electric urban vehicles to their location and request to be dropped off at another destination on campus.

During the past five months, Ford and MIT have used LiDAR sensors and cameras mounted to the vehicles to document pedestrian flow between different points on campus. LiDAR is an efficient way to detect and localise objects from the environment surrounding the shuttles. They say the technology is much more accurate than GPS, emitting short pulses of laser light to precisely pinpoint the vehicles’ location on a map and detect the movement of nearby pedestrians and objects.

Using this data, researchers study the overall pattern of how pedestrian traffic moves across campus, which helps the researchers anticipate where the most demand for the shuttles will be at any given moment. This allows the shuttles to be carefully pre-positioned and routed to serve the MIT population as efficiently as possible.

Researchers also take into account other factors that affect pedestrian movement on MIT’s campus, such as varying weather conditions, class schedules, and the dynamic habits of students and professors across different semesters.

“The onboard sensors and cameras gather pedestrian data to estimate the flow of foot traffic,” said Ken Washington, vice president of Research and Advanced Engineering at Ford. “This helps us develop efficient algorithms that bring together relevant data. It improves mobility-on-demand services, and aids ongoing pedestrian detection and mapping efforts for autonomous vehicle research.”

For more information on companies in this article

Related Content

  • Commuting habits come under scrutiny
    March 28, 2017
    Cities have a moral responsibility to encourage the smart use of transportation and Andrew Bardin Williams hears a few suggestions. Given the choice of getting a root canal, doing household chores, filing taxes, eating anchovies or commuting to work, nearly two-thirds of Americans said that they wouldn’t mind commuting into work—at least according to a poll conducted by Xerox (now Conduent) over its social media channels at the end of 2016.
  • Fast moving walkways could move 7,000 people per hour
    November 28, 2016
    Researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) researchers have been studying futuristic transport solutions for car-free urban centres and have come up with an optimal design for a network of accelerating moving walkways. This is not a new concept – the first moving walkways were seen in Chicago in 1893 and seven years later they were used at the world’s fair in Paris. They are also regularly used the world over in airports and transport terminals. As part of the PostCarW
  • Cubic: predictive analytics is putting fortune tellers out of business
    November 23, 2018
    The rise of machine learning and artificial intelligence means that fortune tellers will soon be out of business. Ed Chavis takes a behind the scenes look at the world of predictive analytics ver since organisations started taking advantage of insights derived from Big Data, data scientists concentrated their efforts on the ability to make correct assumptions about the future. A few years later, with the help of automation, developments in machine learning (ML) and advancements in the application of a
  • Improving traffic flow with the SignalGuru app
    September 19, 2012
    Researchers at the Massachusetts Institute of Technology have developed SignalGuru, an app that uses dashboard-mounted smartphones to help drivers avoid red lights and reduce fuel consumption. Researchers say that SignalGuru predicts when a traffic signal is about to change, and the speed that should be driven when approaching an intersection in order to cruise through without stopping.