Skip to main content

Ford, MIT project measures pedestrian traffic, predict demand for electric shuttles

Ford Motor Company and the Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services. The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimate
July 28, 2016 Read time: 2 mins
278 Ford Motor Company and the 2024 Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services.

The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimately helps predict demand for the shuttles. This, in turn, helps researchers and drivers route shuttles toward areas with the highest demand to better accommodate passengers.

The researchers plan to introduce the service to a group of students and faculty beginning in September. This group will use a mobile application to hail one of three electric urban vehicles to their location and request to be dropped off at another destination on campus.

During the past five months, Ford and MIT have used LiDAR sensors and cameras mounted to the vehicles to document pedestrian flow between different points on campus. LiDAR is an efficient way to detect and localise objects from the environment surrounding the shuttles. They say the technology is much more accurate than GPS, emitting short pulses of laser light to precisely pinpoint the vehicles’ location on a map and detect the movement of nearby pedestrians and objects.

Using this data, researchers study the overall pattern of how pedestrian traffic moves across campus, which helps the researchers anticipate where the most demand for the shuttles will be at any given moment. This allows the shuttles to be carefully pre-positioned and routed to serve the MIT population as efficiently as possible.

Researchers also take into account other factors that affect pedestrian movement on MIT’s campus, such as varying weather conditions, class schedules, and the dynamic habits of students and professors across different semesters.

“The onboard sensors and cameras gather pedestrian data to estimate the flow of foot traffic,” said Ken Washington, vice president of Research and Advanced Engineering at Ford. “This helps us develop efficient algorithms that bring together relevant data. It improves mobility-on-demand services, and aids ongoing pedestrian detection and mapping efforts for autonomous vehicle research.”

For more information on companies in this article

Related Content

  • Mounting benefits of dynamic tolling project
    January 30, 2012
    Wisconsin's four-year HOT lanes pilot project, launched in May 2008, cost US$18.8 million to construct. Halfway into the project, which uses variably priced, or dynamic, tolling to improve highway efficiency, the benefits are mounting. The problem was obvious, and frustrating, to anyone who ever sat in bumper-to-bumper traffic on State Route 167 and watched a lone car whiz by every 20 seconds or so in the carpool lane. But for planners at the Washington State Department of Transportation, the conundrum was
  • Report highlights ways to make roads safer for pedestrians
    November 23, 2012
    A report released by the International Transport Forum (ITF) at the OECD highlights the role of national governments in improving pedestrian mobility and proposes twelve measures to create safer walking environments. The study, entitled Pedestrian Safety, Urban Space and Health, was prepared by a working group of transport experts and urban planners from nineteen countries and the World Health Organisation under the leadership of the ITF. The report comes to a number of conclusions, including the fact that
  • Mobileye and Lucid partner on autonomous vehicles
    January 4, 2017
    US-based electric vehicle developer Lucid Motors is to collaborate with Israeli company Mobileye to enable autonomous driving capability on Lucid vehicles. Lucid plans to launch its first car, the Lucid Air, with a complete sensor set for autonomous driving, including camera, radar and LiDAR sensors. Mobileye will provide the primary computing platform, full eight-camera surround view processing, sensor fusion software, Road Experience Management (REM) crowd-based localisation capability and reinforceme
  • Car parking and parked cars need not be a technological black hole
    March 19, 2015
    David Crawford mines the potential of joined-up parking. Drivers conventionally see parking as an isolated, often frustrating, action; but collectively their attempts to find a space impact hugely on traffic flows. But new analyses of parking events look set to deliver real benefits to motorists and cities alike. Initiatives getting under way around the world are highlighting the advantages of connecting up parking events and – eventually - parked cars. The hoped-for results include not only enhanced urban