Skip to main content

Ford, MIT project measures pedestrian traffic, predict demand for electric shuttles

Ford Motor Company and the Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services. The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimate
July 28, 2016 Read time: 2 mins
278 Ford Motor Company and the 2024 Massachusetts Institute of Technology are collaborating on a new research project that measures how pedestrians move in urban areas to improve certain public transportation services, such as ride-hailing and point-to-point shuttles services.

The project will introduce a fleet of on-demand electric vehicle shuttles that operate on both city roads and campus walkways on the university’s campus. The vehicles use LiDAR sensors and cameras to measure pedestrian flow, which ultimately helps predict demand for the shuttles. This, in turn, helps researchers and drivers route shuttles toward areas with the highest demand to better accommodate passengers.

The researchers plan to introduce the service to a group of students and faculty beginning in September. This group will use a mobile application to hail one of three electric urban vehicles to their location and request to be dropped off at another destination on campus.

During the past five months, Ford and MIT have used LiDAR sensors and cameras mounted to the vehicles to document pedestrian flow between different points on campus. LiDAR is an efficient way to detect and localise objects from the environment surrounding the shuttles. They say the technology is much more accurate than GPS, emitting short pulses of laser light to precisely pinpoint the vehicles’ location on a map and detect the movement of nearby pedestrians and objects.

Using this data, researchers study the overall pattern of how pedestrian traffic moves across campus, which helps the researchers anticipate where the most demand for the shuttles will be at any given moment. This allows the shuttles to be carefully pre-positioned and routed to serve the MIT population as efficiently as possible.

Researchers also take into account other factors that affect pedestrian movement on MIT’s campus, such as varying weather conditions, class schedules, and the dynamic habits of students and professors across different semesters.

“The onboard sensors and cameras gather pedestrian data to estimate the flow of foot traffic,” said Ken Washington, vice president of Research and Advanced Engineering at Ford. “This helps us develop efficient algorithms that bring together relevant data. It improves mobility-on-demand services, and aids ongoing pedestrian detection and mapping efforts for autonomous vehicle research.”

For more information on companies in this article

Related Content

  • Bridge & tunnel management: seeing the bigger picture
    September 10, 2024
    A variety of technologies are available to monitor the health of critical infrastructure – and to keep the drivers who use it safe by flagging incidents while reducing false alarms
  • Report highlights community impact of new mobility options
    March 29, 2018
    Local authorities and communities must understand the impacts of the new mobility options and regulate to get the transport systems they want, according to a new report. Colin Sowman takes a look. Outside of the big cities plagued with congestion, the existing transportation system(s) often cope adequately, and the ongoing workload (maintenance, safety…) is more than enough to keep local transport authorities busy. Is it, therefore, a good use of public service employees’ time to keep abreast of the raft
  • EC transit wishlist: face masks, distancing, cleaning, contactless
    June 3, 2020
    European Commission also recommends Covid-19 isolation facilities at transport hubs
  • Cubic to expand University of Maryland NextBus system
    February 2, 2017
    Cubic Transportation Systems has been awarded a US$1.1 million, five-year contract extension from the University of Maryland (UMD) to upgrade its bus fleet management system, which currently features approximately 80 buses. They all have NextBus hardware capabilities, including GPS-based trackers, driver control units and automatic vehicle location to inform passengers of the place and time of bus arrivals. Under the contract extension, Cubic will enhance UMD’s smart bus offering by providing features su