Skip to main content

C/AV technology will be ‘life-altering revolution’

Preparing for the challenges - and promises - of connected and automated vehicles and other emerging transportation technologies does not necessarily mean investing in actual hardware. Matthew Smith identifies eight key points that US transportation authorities need to look at. Transportation technology is moving rapidly. With the advent of connected and automated vehicle (C/AV) technology, the nation is on the verge of experiencing a major transportation revolution: a life-altering revolution akin to th
July 20, 2018 Read time: 7 mins
BeeBright | Shutterstock.com
Preparing for the challenges - and promises - of connected and automated vehicles and other emerging transportation technologies does not necessarily mean investing in actual hardware. Matthew Smith identifies eight key points that US transportation authorities need to look at


Transportation technology is moving rapidly. With the advent of connected and automated vehicle (C/AV) technology, the nation is on the verge of experiencing a major transportation revolution: a life-altering revolution akin to the advent of railroads in the 1800s and the development of the interstate highway system in the 1950s.  

Vehicle automation aims to address key factors in traffic fatalities - human decision-making and errors. However, under some projections, it may be 30 years or more before the vehicle fleet is comprised primarily of automated vehicles. In the interim, and even after that point, there is still a need to accommodate human drivers within the transportation network. Vehicle-to-infrastructure (V2I) communications and applications are key components to supplementing vehicle automation systems, and to leverage new and emerging technology for protecting the human operators of motor vehicles. This emerging technology will undoubtedly change the transportation landscape, and fundamentally change transit, freight operations and the ownership and use of personal vehicles.  

Just as transformative, however, is the emerging technology and its supporting data systems that provide an opportunity for transportation agencies to adapt, improve and rethink how they conduct their core functions of providing safe, efficient and productive transportation systems. As promising as C/AV technology is for transportation safety and mobility, there are several challenges that both state and national departments of transportation (DoTs) need to be prepared to face.  

One of the key first steps for organising a department’s approach and beginning the forward-thinking discussion is to establish a C/AV strategic plan. This helps decision makers understand specific needs and how to maximise infrastructure spending dollars now to fully prepare for this transportation evolution. A well thought-out plan helps guide departments prepare to face the adoption challenge and should include eight key considerations:

1) Partnering


The simple fact is that transportation infrastructure owners and operators don’t develop or build the technology that is driving this revolution. On the other hand, the developers and builders of the technology do not have experience planning, designing, building or operating a transportation infrastructure network. Building solid, long-term relationships, expectations and strategies between these types of partners is essential for successfully moving forward.

2) Technology adoption


Projections vary wildly across the country regarding when C/AV will be introduced into the public traffic flow. While numerous pilot connected vehicle systems have been deployed in local test markets, it is likely to be some time before these systems are pervasive enough to cause expected beneficial impacts to transportation mobility and safety. But how long is that? Three years? Ten years? 30 years? All of these time frames have been suggested by those in the technology industry, which makes it challenging to plan for the future. That said, it is important to establish a general - yet flexible - adoption timeline as the learning and discovery phase can reap benefits for new understandings.  

3) Mixed vehicle fleets


During the aforementioned technology adoption period, transportation infrastructure owners and operators will be faced with planning for a transportation system that includes both highly capable vehicles and vehicles with little ‘intelligent’ capability. The majority of year 2018 vehicles (passenger, commercial and transit) put into the transportation system today do not have any automated capabilities, despite some other prevalent advanced safety features. These vehicles will still be using the transportation system ten, 20 and even 30 years from now. This mixed vehicle fleet presents planning challenges for taking advantage of new technology developments, while still accommodating today’s vehicle fleet capabilities.

4) Infrastructure needs


In this future of mixed vehicle fleets and maturing technology, what is it that DoTs need to do from an infrastructure standpoint to prepare? Is a strong, modified pavement marking programme necessary to accommodate machine vision (which is a specific challenge in northern tier states with winter weather activities)? What connected vehicle systems and applications will help advance the safety and mobility of system users? When should infrastructure design standard changes be considered that will take advantage of not accommodating a human operator? These are the types of questions that must be considered for future planning.

5) Changes in travel patterns


Two competing theories exist about the impact that C/AV technologies will have on the future of travel patterns. The first is that it will allow people to live further from their work places, with the expectation that commute time becomes productive time to conduct professional or personal business - or even sleep. This could potentially reverse much of the urbanisation trend since there is less of an incentive for living closer to employment areas. Conversely, the second theory is that it will mean people migrating to urban areas and employment centres, since the need to own a personal vehicle is reduced due to increased mobility options. The likely reality is that both scenarios are partially true as the change in travel patterns will vary geographically. A flexible C/AV strategic plan supplemented by scenario planning will help DoTs prepare for multiple potential outcomes of technology adoption. Conducting a planning analysis using different assumptions on technology adoption and travel pattern impact is t
he basis of scenario planning. This can help organisations understand the range of impacts that new emerging transportation technology may have.

6) Multi-modal technology adoption


Different modes of travel are likely to adopt C/AV technologies in stages, adopting the technology based on cost savings and how effectively the technology solves unique challenges. Medium- and long-haul freight fleets may adopt emerging technologies quicker, due to the clear benefit-to-cost business case that can be made with the resulting safety and fuel-saving benefits. Likewise, transit operators are likely to be early adopters of emerging transportation technology due to the clear business cases that can be made. As a result, there may be an ‘unequal’ rate of technology adoption between the different modes, which can be accounted for by a flexible C/AV strategic plan and its related scenario planning activities.

7) Data


Most of these emerging transportation technologies will either be driven by - or will generate - massive amounts of data related to vehicle status and traffic activity. There are expected to be an almost unlimited number of ways that transportation agencies can benefit from this data, both from a systems and a business operations standpoint. The challenge is that most transportation agencies do not include data processing as a core function, and are not prepared to take full advantage of this data-driven future.

8) Workforce


The transportation system of tomorrow will need a highly-skilled, and varied, workforce to accommodate the emerging transportation technology. Alongside civil and electrical engineering, many agencies will come to see network engineering, data management and systems engineering as core functions capable of maintaining advanced systems with the same level of detail as maintaining bridges and pavements. This evolving workforce will also put added pressure on our education system to adapt curricula  to produce tomorrow’s workers. It would behoove DoTs and transportation agencies to develop strategic partnerships with universities and K-12 (12th grade - 17-19 years) institutions to help set the standard.

There is always a risk, no matter how small, that equipment - and even entire technologies - evolve so quickly that they become obsolete before most transportation assets. Additionally, the technology advancement is frequently completely out of the control of public transportation agencies. This uncertainty will cause some to hesitate on making considerable investment in any given set of technologies. However, to prepare for the challenges (and promises) of C/AV, and other emerging transportation technologies, owners and operators of transportation infrastructure don’t necessarily have to invest in actual hardware. Yes, there are many great infrastructure-based options that can provide safety and mobility benefits today, and for many years to come. However, there are other directions that prudent transportation system owners, operators and managers can embark on today to ensure alignment with advanced transportation technology development. Forward-thinking states and their partners who develop a plan and grow
it over time will be the ones poised for long-term, sustained success as this pending transportation revolution sweeps the nation.

Related Content

  • When will Google wake up to MaaS gold mine?
    December 3, 2018
    Mobility services are a potential gold mine for data-hungry tech companies. That being the case, Andrew Bunn asks: what exactly happens when giants such as Google and Amazon decide to get their teeth into MaaS? There are many different perspectives on Mobility as a Service (MaaS), with many different views on what the latest and future applications of technology are going to bring to transportation infrastructure. However, there is one question that does not seem to come up at all. Up to now, MaaS-relate
  • Preventing connected vehicles creating disconnected drivers
    November 12, 2015
    Advanced driver assistance systems (ADAS) are evolving at a rapid pace – but drivers’ ability to cope with them is not and at some point the mismatch must be addressed. Probably the biggest challenge the transportation industry has ever faced.” That is how Dr Bryan Reimer of Massachusetts Institute of Technology AgeLab describes the challenges posed by semi-autonomous vehicles.
  • Debating the future development of ANPR
    July 31, 2012
    What future is there for automatic number plate recognition? Will it be supplanted by electronic vehicle identification, or will continuing development maintain the technology's relevance? In recent years, digitisation and IP-based communication networks have allowed Automatic Number Plate Recognition (ANPR) to achieve ever-greater utility and a commensurate increase in deployments. But where does the technology go next - indeed, does it have a future in the face of the increasing use of, for instance, Dedi
  • Migrating to advanced traffic management systems
    March 14, 2012
    Rich pickings of reduced cost and greater value are up for grabs as highway authorities migrate to new traffic management systems – if they choose their paths wisely. Jon Masters reports. Experience gained and expertise developed over the past decade are informing good advice for transport agencies contemplating new or expanded traffic management systems. Technological projects aimed at reducing road congestion may be frequently unique and invariably complex, but a picture is emerging of sensible, prudent a