Skip to main content

3M reflect on why CAVs need lines and signs

Tammy Meehan and Thomas Hedblom of 3M consider the ongoing development of technology needed to introduce connected and autonomous vehicles. The transportation industry is in the midst of the most dramatic shift since Henry Ford introduced horseless carriages. Already we are seeing the increased use of advanced driver assistance systems (ADAS) which, along with the introduction of autonomous vehicles in the next few decades, will bring profound changes to vehicles and the environment in which they operate.
May 10, 2017 Read time: 6 mins
The sensors installed on the car enable it to interact with its environment and help avoid accidents.

Tammy Meehan and Thomas Hedblom of 3M consider the ongoing development of technology needed to introduce connected and autonomous vehicles.

The transportation industry is in the midst of the most dramatic shift since Henry Ford introduced horseless carriages. Already we are seeing the increased use of advanced driver assistance systems (ADAS) which, along with the introduction of autonomous vehicles in the next few decades, will bring profound changes to vehicles and the environment in which they operate.

Well before fully autonomous vehicles and trucks can appear on the roads, work is underway to build an entirely new ecosystem needed for this technology to operate. This requires extensive research to create intelligent transportation materials and systems and is a collaborative effort between industry, academic institutions and government organisations. The current focus of the Traffic Safety and Security Division is on areas ranging from machine-readable and smart sign technology and more robust and visible pavement markings to wireless communications beacons and safer passage through construction zones.

Machine-readable

The future of transportation will require roadways to become readable by machines. Part of how this will be achieved are road markings that can be read by sensors to enable ADAS and autonomous systems to detect lines.

There is strong industry consensus that pavement markings play an integral role in moving to higher levels of automation. On February 21, 2017 the House Transportation Committee held a hearing on building infrastructure for the 21st century and invited comment from industry leaders. A written statement by BMW of North America CEO Ludwig Willisch stated that roadways must be properly prepared for autonomous cars so that vehicle sensors and cameras can read road markings and signage to make the correct decisions. Willisch added that well-maintained streets and uniform lane markings, as well as consistent signs and traffic signals, would be helpful in accelerating the deployment of [autonomous vehicles].

However, pavement markings do not provide the total solution. They form part of an overall system of redundancy which is critical to delivering improved safety via partially- or fully-autonomous vehicles. Redundancy in safety systems and standardisation of the infrastructure will be the backbone of a successful transition from the current environment to an environment where automated vehicles share the road.

Autonomous vehicle solution developers agree that at least four layers of redundancy are required to effectively process and utilise sensor-supplied information accurately and safely. While this does not necessarily mean four unique types of sensors, it does mean that multiple sensors and processes work together to provide an environment with backups to the backups to the backups.

Simply put, a single mechanism for governing an autonomous vehicle is too risky. Consider a vehicle using only GPS to navigate that loses the signal on entering a tunnel or while driving through an urban canyon, or after the satellite fails. Redundant systems ensure that additional mechanisms are in place to provide the information needed to continue operating safely even when the primary system fails. A principle that is already a standard in the aerospace industry, the concepts of redundancy and standardisation, is widely accepted by the ADAS standards committees and AOEMs (automotive original equipment manufacturers).

One example of active research in this area is a joint project between 4080 3M and the 8520 Texas A&M Transportation Institute to develop an AASHTO/SAE standard for pavement markings to provide reliable detection for machine vision systems.

“The Road Markings for Machine Vision Project illustrates the importance of collaboration in such the complex and uncharted territory of autonomous systems” noted Paul Carlson, research engineer at the Texas A&M Transportation Institute.

Another critical element of creating smarter infrastructure is systems that allow vehicles to interpret information, and central to this is the evolution of automated sensing and the infrastructure to be sensed. While traditional signs and pavement markings were designed for human vision, future infrastructure will need to provide information to both humans and sensing systems designed for ADAS and automated vehicles.

For its part, 3M is working on improving the visibility of pavement markings for both humans and machines across a variety of daylight and night-time conditions. In general, enhancements to pavement markings designed to improve detectability by the human eye also improve detection by an optical camera in a vehicle. In fact, a camera ultimately provides a more consistent evaluation of the pavement marking than the average human eye and both human and machine vision need to be supported for the foreseeable future. This drives a need for common objectives: pavement markings must exhibit sufficient levels of daytime contrast compared to the adjacent roadway surface, and provide enough retroreflectivity and colour contrast at night-time in ways that ensure both humans and camera systems can see the lines while driving.

Marking durability

The durability of the pavement markings is an important consideration to ensure consistent readability over time, especially in a variety of extreme weather conditions. The use of high-index microcrystalline ceramic beads in  pavement markings has resulted in highly durable optics that are abrasion-resistant and can withstand mechanical challenges, such as sanding and salting. Not only are the ceramic beads harder than sand, they offer high dry reflectivity and wet retroreflectivity during daylight and at night-time. Now, researchers are working on the next generation to extend the warranted period for retained retroreflective performance from the current minimum of four years (in northern areas) and up to six years in southern non-snowplough states.

Another critical component of a infrastructure compatible with both ADAS and autonomous vehicles is developing road signs with improved readability for humans and camera-equipped vehicles. Next-generation signs will provide more data to drivers and automated vehicles as well as dynamic updates to the information should road conditions change.

To facilitate this development, 3M continues to enhance its Dedicated Short Range Communication (DSRC) Multi-Channel Test Tool, which verifies transmitted data and protocol for connected vehicle technology and service/application initiatives. It detects transmitting DSRC units (roadside or on board) and monitors the control, or service and dedicated safety channels. It can be used by equipment providers and DoTs to check wireless V2V, V2I) and V2X communications to ensure critical details of a changing environment are communicated accurately and rapidly to connected and automated vehicles [see illustration]. Future generations of passive signage will also contain embedded smart systems to provide additional and more relevant information to drivers.

Regulatory environment

The environment needed to enable autonomous vehicles is vast and enormously complex. To create an environment optimised for autonomous vehicles that can fulfil the promise of increased safety, the infrastructure needs to be developed in tandem with the expanded functionality being developed for vehicles. Multiple transportation industry stakeholders are working together to define the safety challenges that automated vehicles present, to set realistic expectations and to deliver lasting, permanent solutions.

The US DoT published the Federal Automated Vehicles Policy in September 2016. In its words, “the excitement around highly automated vehicles (HAVs) starts with safety.” In 2015 alone, 35,092 people died on US roadways. Ninety-four percent of crashes are attributed to human choice or error.

Ultimately, the automated driving future is not just about the technology that OEMs put into their vehicles. It is about a broad and integrated system that allows cars to communicate with each other and with the driving ecosystem to keep drivers and other roadway users safe.

ABOUT THE AUTHORS: Tammy Meehan and Thomas Hedblom are respectively global portfolio manager, Intelligent Transportation and division scientist with 3M.

For more information on companies in this article

Related Content

  • Klimator looks Ahead to winter weather
    September 15, 2022
    Swedish firm's software links with floating car data to accurately detect road conditions
  • Will mobile apps kick-start mobility pricing?
    January 5, 2016
    Thomas Hallauer from Ptolemus believes trials of connected road charging services will show the pay per mile concept will go much further than previously thought. Drivers are progressively becoming directly connected to the transport infrastructure and while the methods are changing, the innovation is really in the models rather than the technology.
  • Radar reinforces detection efficiency
    March 16, 2016
    Radar can have distinct advantages in some transport-related situations as Colin Sowman found out during a visit to Navtech Radar. Despite tremendous advances in machine vision techniques, the accuracy and reliability of camera-based detection systems suffer during periods of poor visibility where other technologies may offer an alternative. Radar is one such technology. It too has seen significant development in recent years and according to Navtech Radar, the technology can often fulfil detection and moni
  • Mileage based charging offers secure future for funding
    August 10, 2016
    HNTB’s Matthew Click sets out why a move to mileage-based pricing is inevitable. Infrastructure is the most neglected yet the most critical engine of our society, and our continued indifference could lead to a dystopian future. Our roads, bridges and highways have been largely passed by in the digital age—marginalised in an era when funding is limited and stewardship of physical assets has given way to our preoccupation with technological innovation and data—the stuff of the virtual realm.