Skip to main content

Q-Free neural networks see all sides

Analytics solution extends Intrada ALPR suite
By David Arminas June 2, 2020 Read time: 2 mins
A black and white case: Q-Free also identifies vehicle class, colour, make and model (© Skovalsky | Dreamstime.com)

Q-Free says it is developing improved vehicle analytics and detection for its automatic licence plate recognition (ALPR) technology that identifies vehicle class, colour, make and model.

The technology also identifies which side of the vehicle is being analysed, according to Q-Free.

The vehicle analytics feature is an extension of the Norway-based company’s Intrada ALPR which processes more than a billion licence plates around the globe each day.

The solution can be used with any vendor, making it a convenient extension that opens new possibilities for its customers’ operations and business models.

There is no need for a customer to change existing video infrastructure or invest in costly hardware-based alternatives such as radar and laser, says Q-Free.

The company says that data from test sites in South America and Asia show surveillance and security operators successfully gathering additional identifying characteristics to make the best use of existing video detection equipment.

In particular, the vehicle angle feature determines which side of the vehicle is facing the camera, for example the front or rear. This is helpful in determining entry and exit points in parking applications.

The new vehicle analytics are a result of innovative, reliable neural networks and the company’s machine learning capabilities, according to Marco Sinnema, product manager for Q-Free’s Intrada ALPR library.

“Work with initial customers continues to train the detection of the neural networks – which is now available in our commercial, off-the-shelf Intrada ALPR library,” he said.

“Early results are showing the system performing with great precision, and we plan on delivering the same unrivalled automation accuracy and low error rates offered in our existing ALPR solutions.”

Q-Free’s other products and brands include Intelight, OpenTMS, Intrada, ParQSense and Q-Free Hub.

For more information on companies in this article

Related Content

  • Terrestrial solution to stellar shortcomings
    December 5, 2013
    Inherent weaknesses in satellite communications are leading several countries to re-evaluate terrestrial-based backup systems. There is a tale frequently told in satellite navigation circles, of how landing systems at Newark Airport were disrupted by a truck driver using GPS jamming equipment as he drove along the New Jersey Turnpike. While there was no threat to flight safety as the interference to GPS reference stations being tested, the story highlights how apparently benign threats have the potential t
  • Q-Free acquires Open Roads Consulting
    July 17, 2014
    Q-Free has signed a Share Purchase Agreement (SPA) for the acquisition of Open Roads Consulting for a cash consideration of approximately US$6.2 million. Further consideration is dependent on future financial performance. The transaction is expected to be closed within the end of the third quarter 2014. The acquisition represents a milestone for Q-Free and is a strategically good match with other advanced traffic management systems (ATMS) and road user charging (RUC) activities within the group. It will
  • Want intelligent transit? Then share data
    March 2, 2022
    How will the US deploy intelligent transit networks that enable connected vehicles? Data sharing is crucial if urban mobility users are to benefit, explains Timothy Menard of Lyt
  • Machine vision needs standards to fulfil ITS demands
    May 28, 2014
    No-one should expect the enabling qualities of machine vision to come free of charge but Jason Barnes finds there is still much that ITS stakeholders can do to help reduce costs. After many years of application in high-end solutions for the enforcement and tolling sectors, machine vision is gaining traction in more general areas of traffic management. Nevertheless, those OEMs producing transport-oriented solutions which incorporate machine vision and looking to increase the technology’s share of the ITS mar