Skip to main content

Kistler installs 'world's largest digital WiM site' in smallest US state

Forty Lineas digital quartz sensors cover 10 lanes on bridge in Rhode Island
By Adam Hill September 5, 2024 Read time: 2 mins
Kistler team installs sensors flush with the road surface on Washington Bridge in Providence (image: Kistler Group)

Kistler is to install what it says is the largest digital Weigh In Motion (WiM) site in the world, with 40 Lineas digital quartz sensors covering 10 traffic lanes.

The company is carrying out the work for Rhode Island Department of Transportation (RIDoT) to protect the structural health of Washington Bridge in the city of Providence. Rhode Island is the smallest state by area in the US.

Currently, the north span of the Washington Bridge is being removed and a new span is planned. To keep traffic moving during the north span restoration project, two traffic lanes were added to the south span. 

Kistler says the load rating on the south span is adequate, but installing its structural health monitoring (SHM) solution means RIDoT will be able to evaluate in real time whether the additional traffic load is having an adverse impact.

“Bridges talk to us,” observes JT Kirkpatrick, Kistler head of sales, traffic solutions. 

“We have the ability to hear and interpret every sound, even nearly inaudible sounds, emitted from a bridge that signal structural distress. This will enable us to work with RIDoT to proactively monitor the bridge’s structural health in real-time so they can take action to preserve this vital structure.”

WiM sensors are placed just under the surface of the bridge’s roadway, and the system also includes charge amplifiers to condition electrical signals from the sensors, data loggers to process data in real time and LPR cameras to identify trucks by their class size and monitor for overweight wheel, axle and gross vehicle weight (GVW) loads.

The sensor-based SHM solution will enable RIDoT to perform predictive analyses and more timely preventative maintenance, Kistler insists.

Measuring equipment — accelerometers, strain gauges, temperature sensors, inclinometers and a meteorology station — will measure, collect and interpret bridge health data.

For more information on companies in this article

Related Content

  • Applied launches traffic control monitor
    February 26, 2021
    Palm-sized AI 500-030 LPM enables real-time access to traffic equipment in the field
  • SCATS study shows significant savings
    December 16, 2013
    Australian study quantifies the benefits of SCATS to the motorists, the environment and the economy. Opportunity weekday cost savings potential of some AUD16 million (US$15.2 million) has emerged from rigorous analysis of a one-day study of Australia’s Sydney Coordinated Adaptive Traffic System (SCATS) in operation. This represents 27% of the total cost of a real alternative semi-adaptive traffic control. The estimated indicative annual weekday-based value is AUD3,900 million (US$3,705 million) or 0.9% of t
  • Rhode Island to install wrong-way driver warning system
    March 5, 2014
    Rhode Island Department of Transportation (RIDOT) is planning to invest US$2 million in a new system aimed at decreasing the number of wrong-way drivers on the state’s highways. According to Robert Rocchio, managing engineer of traffic and safety at RIDOT, the state sees a minimum of one fatal crash per year due to drivers going the wrong way on the state's major highways. RIDOT hopes to begin installing intelligent transportation systems on highway off-ramps at twenty different locations across the s
  • Axis aids incident detection on French viaduct
    October 31, 2016
    France’s first AID system has halved attendance time on the Calix Viaduct. TheCentre for Traffic Engineering and Management (CIGT) at Caen in northern France manages 367km of the national network in the Manche/Calvados district including the 1.2km long, 15-span Calix Viaduct across the Canal de Caen à la Mer.