Skip to main content

Kistler installs 'world's largest digital WiM site' in smallest US state

Forty Lineas digital quartz sensors cover 10 lanes on bridge in Rhode Island
By Adam Hill September 5, 2024 Read time: 2 mins
Kistler team installs sensors flush with the road surface on Washington Bridge in Providence (image: Kistler Group)

Kistler is to install what it says is the largest digital Weigh In Motion (WiM) site in the world, with 40 Lineas digital quartz sensors covering 10 traffic lanes.

The company is carrying out the work for Rhode Island Department of Transportation (RIDoT) to protect the structural health of Washington Bridge in the city of Providence. Rhode Island is the smallest state by area in the US.

Currently, the north span of the Washington Bridge is being removed and a new span is planned. To keep traffic moving during the north span restoration project, two traffic lanes were added to the south span. 

Kistler says the load rating on the south span is adequate, but installing its structural health monitoring (SHM) solution means RIDoT will be able to evaluate in real time whether the additional traffic load is having an adverse impact.

“Bridges talk to us,” observes JT Kirkpatrick, Kistler head of sales, traffic solutions. 

“We have the ability to hear and interpret every sound, even nearly inaudible sounds, emitted from a bridge that signal structural distress. This will enable us to work with RIDoT to proactively monitor the bridge’s structural health in real-time so they can take action to preserve this vital structure.”

WiM sensors are placed just under the surface of the bridge’s roadway, and the system also includes charge amplifiers to condition electrical signals from the sensors, data loggers to process data in real time and LPR cameras to identify trucks by their class size and monitor for overweight wheel, axle and gross vehicle weight (GVW) loads.

The sensor-based SHM solution will enable RIDoT to perform predictive analyses and more timely preventative maintenance, Kistler insists.

Measuring equipment — accelerometers, strain gauges, temperature sensors, inclinometers and a meteorology station — will measure, collect and interpret bridge health data.

Related Content

  • April 14, 2022
    Weighing up the future with AI
    There is broad agreement that artificial intelligence will be an important part of Weigh in Motion as we go forward – but Adam Hill finds that not everyone agrees quite how close we are to that point
  • March 24, 2014
    TDS celebrates triple product launch at Intertraffic
    Germany-based Traffic Data Systems (TDS) is launching three ground-breaking products at Intertraffic – the TMCS-U Weigh In Motion system, Bike-DSP, and a world first in testing devices (WIM-SIM). TDS predicts that the TMCS-U with the WIM-DSP unit (Digital Signal Processing, cascadable) will become the new standard for traffic monitoring and Weigh In Motion systems. With a built-in uninterruptible power supply, the company says the device is the world’s most powerful and smallest eight-lane route station to
  • May 24, 2016
    High-speed WIM moves onto the main highway
    High-speed weigh-in-motion is starting to make its mark on both sides of the Atlantic. As a transit country the Czech Republic experiences a large number of overloaded vehicles, which greatly increase highway maintenance costs. This prompted its Transport Ministry to trial an extension of the capabilities of the existing truck tolling system to allow the dynamic high-speed weighing of cargo vehicles. In effect the tolling enforcement gantries become weigh-in-motion (WIM) locations.
  • February 12, 2024
    WiM eases structural health worries
    Concerns about infrastructure are leading road authorities to consider the importance of Weigh in Motion solutions to monitor the wellbeing of their roads – and particularly bridges – finds Adam Hill