Skip to main content

Kistler installs 'world's largest digital WiM site' in smallest US state

Forty Lineas digital quartz sensors cover 10 lanes on bridge in Rhode Island
By Adam Hill September 5, 2024 Read time: 2 mins
Kistler team installs sensors flush with the road surface on Washington Bridge in Providence (image: Kistler Group)

Kistler is to install what it says is the largest digital Weigh In Motion (WiM) site in the world, with 40 Lineas digital quartz sensors covering 10 traffic lanes.

The company is carrying out the work for Rhode Island Department of Transportation (RIDoT) to protect the structural health of Washington Bridge in the city of Providence. Rhode Island is the smallest state by area in the US.

Currently, the north span of the Washington Bridge is being removed and a new span is planned. To keep traffic moving during the north span restoration project, two traffic lanes were added to the south span. 

Kistler says the load rating on the south span is adequate, but installing its structural health monitoring (SHM) solution means RIDoT will be able to evaluate in real time whether the additional traffic load is having an adverse impact.

“Bridges talk to us,” observes JT Kirkpatrick, Kistler head of sales, traffic solutions. 

“We have the ability to hear and interpret every sound, even nearly inaudible sounds, emitted from a bridge that signal structural distress. This will enable us to work with RIDoT to proactively monitor the bridge’s structural health in real-time so they can take action to preserve this vital structure.”

WiM sensors are placed just under the surface of the bridge’s roadway, and the system also includes charge amplifiers to condition electrical signals from the sensors, data loggers to process data in real time and LPR cameras to identify trucks by their class size and monitor for overweight wheel, axle and gross vehicle weight (GVW) loads.

The sensor-based SHM solution will enable RIDoT to perform predictive analyses and more timely preventative maintenance, Kistler insists.

Measuring equipment — accelerometers, strain gauges, temperature sensors, inclinometers and a meteorology station — will measure, collect and interpret bridge health data.

For more information on companies in this article

Related Content

  • Options abound for road weather sensing
    September 6, 2017
    Meteorological organisations invest millions in super-computers to crunch data for ever-more accurate forecasts but inherent unpredictability means that other methods of alerting drivers and road authorities to fast-changing weather and highway conditions are essential. For years, static weather sensors to measure factors such as surface water, ice or high roadway temperatures have been embedded in highways to provide such data. But that is changing.
  • Keeping a weather eye on road conditions
    September 26, 2014
    Drive C2X has shown that advanced warning of poor road conditions could cut fatalities, as David Crawford explains. Connected vehicle (CV)-based warning technologies could mean 6% fewer deaths and 5% fewer injuries in road traffic accidents in Europe, according to the final results of the European Commission (EC) co-funded DRIVE C2X project. According to the European Centre for Information and Communication Technologies (EICT) which provided management support, these “prove that CV systems work and can hav
  • Mounting benefits of dynamic tolling project
    January 30, 2012
    Wisconsin's four-year HOT lanes pilot project, launched in May 2008, cost US$18.8 million to construct. Halfway into the project, which uses variably priced, or dynamic, tolling to improve highway efficiency, the benefits are mounting. The problem was obvious, and frustrating, to anyone who ever sat in bumper-to-bumper traffic on State Route 167 and watched a lone car whiz by every 20 seconds or so in the carpool lane. But for planners at the Washington State Department of Transportation, the conundrum was
  • US to field trial connected vehicle technology
    April 17, 2012
    The US Department of Transportation (DOT) has announced that the University of Michigan will conduct a road safety field trial in Ann Arbor, Michigan, which will include the installation of wireless devices in up to 3,000 vehicles in one location, to evaluate the effectiveness of connected vehicle technology to prevent crashes.