Skip to main content

Upgrading New Yorks's traffic signal timings

The New York City Department of Transportation instituted the Midtown in Motion project to promote multimodal mobility in the Midtown Core of Manhattan, a 110 square block area or “zone” from Second to Sixth Avenue and 42nd to 57th Street. Control extended from 86th Street to 23rd Street, focused on the core zone. MiM provides signal timing changes on two levels: Level 1 control starts from a pre-stored library of timing plans. These are designed offline and are relevant to arterials inside the Midtown stud
February 28, 2013 Read time: 3 mins
The programme of upgrading intersection traffic signals has been one of three main building blocks in New York’s modernization plan (Pic: Aftab Uzzaman)
The 5590 New York City Department of Transportation instituted the Midtown in Motion project to promote multimodal mobility in the Midtown Core of Manhattan, a 110 square block area or “zone” from Second to Sixth Avenue and 42nd to 57th Street. Control extended from 86th Street to 23rd Street, focused on the core zone.

MiM provides signal timing changes on two levels: Level 1 control starts from a pre-stored library of timing plans. These are designed offline and are relevant to arterials inside the Midtown study area. As a result of applying these specially designed timing plans, traffic progression patterns are adjusted, serving the overall purpose of regulating traffic into Midtown, thereby enhancing mobility inside the study area.

Level 1 control of the system alerts operators in the NYCDOT Traffic Management Centre (TMC) to changes in travel time and ve­hicle speed and recommends signal timing adjustments. The opera­tor then reviews video cameras and other sources of information in the vicinity of the flagged avenue to identify the cause for the change in travel time. The TMC supervisor then decides the appropriate course of action to handle the event, which could be signal timing adjustments or requesting that NYPD address the situation.

To evaluate the system’s performance, a comparison of travel time by roadway segments was carried out. Based on the testing to date, in general the average speed improved noticeably. Speeds on approaches to the zone reduced to some degree as expected. Overall (inside and outside the zone) speeds improved, however.

Level 2 control is a split adjustment based on Severity Index (SI) which is related to an estimate of queue length (traffic congestion) by approach. The longer the queue is, the bigger the SI. The control algorithm attempts to reallocate green time between approaches to reduce queuing if possible and to achieve equity between the ap­proaches. Under the current implementation, the splits are adjusted at every third signal cycle.

Level 2 can reduce queuing while achieving equity during the period, where feasible. This will vary by intersection. Level 2 imple­mentation suggests that there are intervals wherein the ‘splits’ (time allocated for the green signal) can be adjusted to better service either the avenue or crosstown street, which is part of the objectives of MiM.

The extensive sensor network is enabling a rich data archive to be built. Combined with the record of actions taken and experience gained, this data will allow new traffic management plans to be de­veloped.

The data now available due to the city’s ITS sensor network, suit­ably analysed and combined with operational experience, confirms a basic principle – that significant variation in the zone is the norm. While there are clear aggregate patterns, daily fluctuations require active traffic management that is designed to anticipate that reality.

  • This is an edited extract from a paper presented by NYCDOT deputy director for systems engineering, Mohamad Talas, at the 19th ITS World Congress in Vienna, Austria, in October 2012. For a copy of the full paper, email %$Linker: 2 Email <?xml version="1.0" encoding="utf-16"?><dictionary /> 0 0 0 oLinkEmail [email protected] NYCTOT false mailto:[email protected] true false%>.

Related Content

  • San Francisco area toll network to issue RFP for 90 miles of express lanes
    September 23, 2013
    Bay Area Infrastructure Financing Authority (BAIFA) has announced the competitive procurement of a toll system integrator (TSI) to design and provide toll systems for nearly 90 directional miles of toll express lanes and expects to be tolling a total of 270 miles within a few years. The plan is to develop toll express lanes following agreement on a regional network in which all the area's HOV lanes will be tolled for single and two occupant vehicles. The RFP covers three initial projects: 55 kilometres o
  • US DOT's ITS JPO selects dynamic mobility applications for development
    January 28, 2013
    The US Department of Transportation's (US DOT) Dynamic Mobility Applications program is exploring the future possibilities for connected vehicles where cars, trucks, buses, the roadside, and smartphones will talk to each other. They will share valuable safety, mobility, and environmental information over a wireless communications network that is already connecting and transforming transportation systems. Such a system of “connected vehicles,” mobile devices, and roads will provide a wealth of transportation
  • ITS World Congress preliminary programme and registration now online
    June 8, 2015
    The preliminary programme of the 22nd ITS World Congress is now available online. In addition to the opening and closing ceremonies and three Plenary Sessions, highlights of this year’s event include the Ministerial Roundtable, two high-level technology summits, three general public sessions and a public afternoon open to all. Download the programme for details of the interactive timetable, sessions, speakers, social and associated events and the more than 20 demonstrations that are planned during the Co
  • TSS showcases Aimsun Online traffic simulation software
    September 26, 2012
    TSS-Transport Simulation Systems’ (TSS) Aimsun traffic simulation software, capable of fusing static, dynamic and hybrid approaches within a single environment, will be a feature of the company’s participation at the ITS World Congress. But it is a sister application, Aimsun Online, that will grab a lot of attention from delegates and not just because it provides a real-time decision support system for traffic management. Its dynamic, high-speed simulation of large areas allows traffic operators to accurate