Skip to main content

Tattile targets machine vision

Tattile’s wide range of camera systems for machine vision use includes the Tag-7 linear camera series and the S200 smart camera range. TAG-7 is a linear CCD CameraLink compact digital camera with a linear 2 megapixel CCD sensor, and is designed to meet the main requirements of machine vision.
October 29, 2014 Read time: 3 mins
S200 smart camera and S200 HYP Camera

592 Tattile’s wide range of camera systems for machine vision use includes the Tag-7 linear camera series and the S200 smart camera range.

TAG-7 is a linear CCD CameraLink compact digital camera with a linear 2 megapixel CCD sensor, and is designed to meet the main requirements of machine vision.

The camera is fully compatible with CameraLink and GenICam standards, allowing rapid software integration with vision systems. Pixel dimensions of 14_m x 14_m TAG-7 provide high quality images, making the device suitable for applications in which image quality is an important feature.

The internal FPGA enables the camera to perform multiple preprocessing algorithms in real time, while the extremely compact design allows quick and easy installation.

The technologically advanced S200 smart camera is designed to meet the main requirements of machine vision.

The all-in-one compact camera has a storage capacity of 32GB, thanks to its SD card, and contains a CPU for image capture and analysis, sending the results direct to the user’s computer.

Powerful image processing architecture, with a dual core processor and an 85K element FPGA enables the user to capture and process images at high speed. A unique combination of sensor and process architecture allows the camera to achieve an extremely high 180 fps in full frame mode.

Graphic software allows the user to programme the FPGA, which handles all communication interfaces, ensuring real-time acquisition and preprocessing management.

The S200 features the Linux open operating system, allowing the user to develop vision applications using Tattile’s software or other manufacturers’ compatible software libraries.

Developed in collaboration with Belgian nanoelectronics research centre IMEC, Tattile launches its first smart camera with hyperspectral technology, the high performance S200 HYP, allowing the user to apply the technology to a wide range of industrial machine vision processes.

The camera is equipped with an extremely powerful image processing architecture, thanks to a dual core processor and FPGA of 85K elements.

All image pre-analysis algorithms and the reconstruction of the hyperspectral cube are performed by the FPGA, leaving the processor with the task of analysing the data and allowing high performance elaboration.

The S200 HYP is available in three different versions, depending on the integrated sensor model:

Linescan, with 100 hyperspectral bands varying from 600 to 1000 nanometers, arranged horizontally on the sensor. Acquisition is performed by sliding the target under the smart camera in order to parse through all the bands, with a maximum speed of 2880 lines per second. The resulting cube is composed of 100 spectral high resolution images.

SnapShot, with 32 hyperspectral bands varying from 600 to 1000 nanometers, arranged as a grid on the sensor. Acquisition is performed
through a duplication optical component, integrated into the smart camera at a maximum speed of 340 fps. The resulting cube is composed of 32 spectral images with resolution of 256 x 256 pixels.

Mosaic, with 16 hyperspectral bands varying from 465 to 630 nanometers, arranged as a 4x4 mosaic on the sensor. Acquisition does not require special configuration at a maximum speed of 340 fps. The resulting cube is composed of 16 spectral images with resolution of 512 x 272, with the option to increase the resolution through de-mosaicing algorithms.

Hall 1, Stand C63
%$Linker: 2 Asset <?xml version="1.0" encoding="utf-16"?><dictionary /> 4 42536 0 oLinkExternal www.Tattile.com<br /> Tattile Website false /EasySiteWeb/GatewayLink.aspx?alId=42536 false false%>

Related Content

  • Genie TS Cameras deliver versatility
    April 25, 2012
    Teledyne Dalsa has introduced the Genie TS series cameras which combine advancements in the company’s CMOS imaging sensor technology with a newly optimised camera series that delivers what the company claims is the widest, most powerful feature set ever in a GigE Vision camera. The Genie TS series will include VGA, 1.2, 1.4, 2, 4, 5, 8 and 12 megapixel formats, reach speeds up to 300 fps and be available in both monochrome and colour versions.
  • ITS need not reinvent machine vision
    October 29, 2014
    Machine vision techniques hold the potential to solve a multitude of challenges facing the transportation sector Optical Character Recognition (OCR), the base technology for number plate recognition, has been in industrial use for more than three decades. It is a prime example of how, instead of having to start from scratch, the transportation sector can leverage and adapt the machine vision expertise already used in industry in order to provide robust solutions with new capabilities. “The real val
  • Vitronic presents next-generation of Lidar technology
    September 7, 2014
    This ITS World Congress sees Vitronic presenting its next-generation of Lidar (Light Detection And Ranging) traffic enforcement in North America. The new and enhanced PoliScan system offers not only best-in-class speed and red light enforcement but enables authorities to enforce additional violations such as tailgating, point-to-point speed enforcement, and ANPR applications simultaneously from the one fixed location.
  • Imagsa debuts Chronos’Spot stereoscopic vision system
    March 25, 2014
    Imagsa Technologies, a high-tech company founded in 2006 to develop high-speed intelligent cameras, will today launch a major new camera, the Chronos’Spot. The company is a pioneer in the use of massive parallelism to analyse 270 images per second with 2048 x 1024 pixel resolution (2 megapixel). The Chronos'Spot stereoscopic vision system combines two of these smart cameras to capture and analyse a total of 1080 megapixels per second.