Skip to main content

Taking it to the streets

The University of Michigan Transportation Research Institute (UMTRI) and US Department of Transportation (USDOT) have launched the Connected Vehicle Safety Pilot Model Deployment in Ann Arbor, Michigan. The largest connected vehicle test undertaken, and a critical next step in the development of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. The pilot, a $22 million partnership between UMTRI and USDOT, is part of a joint research initiative led by the National Highway Traffic
November 30, 2012 Read time: 3 mins
“Cutting-edge technology offers real promise for improving both the safety and efficiency of our roads. That is a winning combination for drivers across America” US Transportation Secretary Ray LaHood
The 5647 University of Michigan Transportation Research Institute (UMTRI) and 324 US Department of Transportation (USDOT) have launched the Connected Vehicle Safety Pilot Model Deployment in Ann Arbor, Michigan. The largest connected vehicle test undertaken, and a critical next step in the development of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication.

 The pilot, a $22 million partnership between UMTRI and USDOT, is part of a joint research initiative led by the 834 National Highway Traffic Safety Administration (NHTSA) to gauge how well wireless connected technology works when taken to street level. This massive and unprecedented project was launched on 21 August and will continue for a year on and around the University of Michigan campus. Nearly 3,000 cars, trucks and buses equipped with Wi-Fi-like V2V and V2I devices will communicate to each other and transportation infrastructure. UMTRI refers to the project as a “scaled-down version of a future in which all vehicles will be connected”.

The technology involves both V2V and V2I communications that transmit and receive vehicle data such as position, speed and direction. Drivers are alerted to a potential crash situation — such as a nearby vehicle unexpectedly braking, a sudden lane change, merging traffic, etc. — by a visual or audible warning inside their vehicles.

Each vehicle will be equipped with three devices. Firstly, a wireless vehicle awareness device (VAD) securely and privately transmits the vehicle’s speed and location to other vehicles in the immediate area. Secondly, an aftermarket safety device (ASD), similar to a VAD, also receives speed and location data from other vehicles, and utilizes this information to generate audio warnings if the threat of a crash exists. Thirdly, a data acquisition system (DAS) collects video and data on driver performance so researchers can learn how drivers interact with the technology, and how they respond when crash warnings are presented.
The sheer scale of the pilot testing should help to broaden understanding of the concept behind connected vehicle technology. It is not just about a vehicle communicating with another vehicle and the surrounding infrastructure; rather a complex network of vehicles and infrastructure seamlessly communicating continuously across the entire transportation environment.

A series of ‘driver clinics’ was completed by USDOT earlier this year, conducted across the country to study how drivers respond to connected vehicle technology. These clinics took place on private test tracks, however. The new pilot deployment will finally start to deliver some answers about how all this innovative technology will function and integrate in reality on public roads and highways.

Connected vehicle development is not just about technology either – it is about human lives. Motor vehicle crashes represent the largest single public health crisis in the United States today, claiming the lives of more than 32,000 Americans each year. It is the leading cause of death for young Americans between four and 35 years of age. The ultimate goal of the pilot is to definitively determine whether connected vehicle technology can do something about this dire situation, by improving safety and reducing the number of crashes, as well as delivering on other promising advantages such as mitigation of traffic congestion.

“Connected vehicle technology has the ability to address as much as 80% of crashes of unimpaired drivers and greatly reduce carbon emissions,” explains UMTRI Director Peter Sweatman. US Transportation Secretary Ray LaHood adds: “This is a big moment for automotive safety. Cutting-edge technology offers real promise for improving both the safety and efficiency of our roads. That is a winning combination for drivers across America.”

Related Content

  • Urban takes IoT Control
    April 27, 2022
    Urban Node 324 Cellular 'works straight out-of-the-box just like a smartphone'
  • Trafficware: Digitised transport tech ‘is the new asphalt’
    April 16, 2019

    Trafficware provides the tech to manage intersections all over the world. Colin Sowman asks CEO Jon Newhard about the ‘questions behind the questions’

    Last year, Trafficware CEO Jon Newhard negotiated the company’s acquisition by Cubic Corporation and now serves as general manager of Trafficware within Cubic’s Transportation Systems business unit.

  • ITS Australia showcases what’s to come in automated vehicle technology
    February 17, 2016
    Drawing more than 200 professionals from intelligent transport systems (ITS) and related disciplines, ITS Australia recently hosted the first in a series of ITS showcase events in Melbourne. Focusing on automated vehicles and cooperative ITS, the event was setting the stage for what’s to come as Melbourne prepares to host the 23rd ITS World Congress later this year. Keynote speakers from USA, UK and Europe shared insights about global technology that is changing the way we use and develop transport techn
  • Heavy vehicles to collect slipperiness data for Finland’s road users
    January 24, 2018
    EEE Innovations Oy (EEE), the Finnish Transport Agency and Trafi have launched a two-year project in the Northern European state to equip 1000 heavy traffic vehicles including buses and trucks with a data collecting system which will produce real-time road slipperiness data. The trial aims to improve traffic safety for road users, drivers and operators. This application, developed by EEE, can be implemented via a software update which reads the data from the Can-bus of the vehicle’s computer. The driver