Skip to main content

Taking it to the streets

The University of Michigan Transportation Research Institute (UMTRI) and US Department of Transportation (USDOT) have launched the Connected Vehicle Safety Pilot Model Deployment in Ann Arbor, Michigan. The largest connected vehicle test undertaken, and a critical next step in the development of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. The pilot, a $22 million partnership between UMTRI and USDOT, is part of a joint research initiative led by the National Highway Traffic
November 30, 2012 Read time: 3 mins
“Cutting-edge technology offers real promise for improving both the safety and efficiency of our roads. That is a winning combination for drivers across America” US Transportation Secretary Ray LaHood
The 5647 University of Michigan Transportation Research Institute (UMTRI) and 324 US Department of Transportation (USDOT) have launched the Connected Vehicle Safety Pilot Model Deployment in Ann Arbor, Michigan. The largest connected vehicle test undertaken, and a critical next step in the development of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication.

 The pilot, a $22 million partnership between UMTRI and USDOT, is part of a joint research initiative led by the 834 National Highway Traffic Safety Administration (NHTSA) to gauge how well wireless connected technology works when taken to street level. This massive and unprecedented project was launched on 21 August and will continue for a year on and around the University of Michigan campus. Nearly 3,000 cars, trucks and buses equipped with Wi-Fi-like V2V and V2I devices will communicate to each other and transportation infrastructure. UMTRI refers to the project as a “scaled-down version of a future in which all vehicles will be connected”.

The technology involves both V2V and V2I communications that transmit and receive vehicle data such as position, speed and direction. Drivers are alerted to a potential crash situation — such as a nearby vehicle unexpectedly braking, a sudden lane change, merging traffic, etc. — by a visual or audible warning inside their vehicles.

Each vehicle will be equipped with three devices. Firstly, a wireless vehicle awareness device (VAD) securely and privately transmits the vehicle’s speed and location to other vehicles in the immediate area. Secondly, an aftermarket safety device (ASD), similar to a VAD, also receives speed and location data from other vehicles, and utilizes this information to generate audio warnings if the threat of a crash exists. Thirdly, a data acquisition system (DAS) collects video and data on driver performance so researchers can learn how drivers interact with the technology, and how they respond when crash warnings are presented.
The sheer scale of the pilot testing should help to broaden understanding of the concept behind connected vehicle technology. It is not just about a vehicle communicating with another vehicle and the surrounding infrastructure; rather a complex network of vehicles and infrastructure seamlessly communicating continuously across the entire transportation environment.

A series of ‘driver clinics’ was completed by USDOT earlier this year, conducted across the country to study how drivers respond to connected vehicle technology. These clinics took place on private test tracks, however. The new pilot deployment will finally start to deliver some answers about how all this innovative technology will function and integrate in reality on public roads and highways.

Connected vehicle development is not just about technology either – it is about human lives. Motor vehicle crashes represent the largest single public health crisis in the United States today, claiming the lives of more than 32,000 Americans each year. It is the leading cause of death for young Americans between four and 35 years of age. The ultimate goal of the pilot is to definitively determine whether connected vehicle technology can do something about this dire situation, by improving safety and reducing the number of crashes, as well as delivering on other promising advantages such as mitigation of traffic congestion.

“Connected vehicle technology has the ability to address as much as 80% of crashes of unimpaired drivers and greatly reduce carbon emissions,” explains UMTRI Director Peter Sweatman. US Transportation Secretary Ray LaHood adds: “This is a big moment for automotive safety. Cutting-edge technology offers real promise for improving both the safety and efficiency of our roads. That is a winning combination for drivers across America.”

Related Content

  • Bringing V2I and V2V communications to workzone safety
    January 26, 2012
    Imran Hayee of the University of Minnesota Duluth's Department of Electrical and Computer Engineering talks about efforts to bring V2I and V2V communications into work zones. With USDOT backing and under the auspices of the ITS Joint Program Office Connected Vehicle Research (formerly IntelliDrive) research programme, M. Imran Hayee of the University of Minnesota Duluth's Department of Electrical and Computer Engineering along with team of his students, have been conducting research into the application of
  • Siemens to provide V2I technology for Florida pilot connected vehicle pilot project
    March 24, 2016
    Siemens, as a member of the Tampa-Hillsborough Expressway Authority (THEA) team, has been chosen by the US Department of Transportation (USDOT) to provide vehicle-to-infrastructure (V2I) technology for a new connected vehicle pilot project. Siemens V2I technology will enable vehicles and pedestrians to communicate with traffic infrastructure like intersections and traffic lights in real-time to reduce congestion specifically during peak rush hour in downtown Tampa. The technology will also help improve s
  • America’s legislature to consider the future of 5.9GHz
    September 26, 2014
    Colin Sowman catches up with the latest moves in the 5.9GHz exclusivity debate. The Wi-Fi Innovation Act, recently introduced to both the US Senate and its House of Representatives, moves into a new phase in the debate over the exclusive right of the 5.9GHz band for Vehicle to Vehicle (V2V) communications. If the Act comes into law, it would require the Federal Communications Commission (FCC) to conduct tests across the whole 5GHz band to determine if the spectrum can be shared without interfering with curr
  • ITS America, automakers respond to Rubio-Booker 5.9 GHz spectrum legislation
    June 23, 2014
    The Intelligent Transportation Society of America (ITS America) and US automakers have responded to the announcement on legislation introduced by US Senators Marco Rubio and Cory Booker that would set deadlines on the Federal Communications Commission (FCC) for developing and publishing a test plan for the use of unlicensed devices in the 5.9 GHz band. The senators introduced S. 2505, the Wi-Fi Innovation Act, legislation to expand unlicensed spectrum use by requiring the Federal Communications Commissio