Skip to main content

Rochester solves $8.5m transit question

RTS in Rochester, New York, saves by working with Conduent to upgrade its CAD/AVL systems rather than ripping them up and replacing them. Andrew Bardin Williams hops on for a ride. What to do, what to do?” It’s a question every transportation official must ask when faced with legacy assets, equipment and software that are nearing the end of their useful life. Nothing lasts forever, right? Freeways need to be repaired, bridges replaced, traffic management software updated and railway cars turned into
October 22, 2018 Read time: 6 mins
RTS serves 1.4 million people in eight counties in the Rochester, New York metropolitan area

RTS in Rochester, New York, saves by working with Conduent to upgrade its CAD/AVL systems rather than ripping them up and replacing them. Andrew Bardin Williams hops on for a ride

What to do, what to do?” It’s a question every transportation official must ask when faced with legacy assets, equipment and software that are nearing the end of their useful life. Nothing lasts forever, right? Freeways need to be repaired, bridges replaced, traffic management software updated and railway cars turned into quaint diners or transportation museums.

As transportation budgets shrink and capital funding dries up, yet demand remains higher than ever and is exponentially expanding, transportation organizations are looking to salvage anything they can - hoping to extend lifespans before having to undergo a costly rip and replace project.

That’s where the ‘Intelligent’ in ITS comes in.

Consider the case of Regional Transit Service (RTS), a public transit system that serves 1.4 million people in eight counties in the Rochester, New York, metropolitan region. RTS buses were installed with computer-aided dispatch/automatic vehicle location (CAD/AVL) systems, connecting the vehicles to back-office scheduling and dispatch software. The CAD/AVL systems ensured that the buses were reliable and ran on time—an innovative concept back when it was deployed in 2001 by 8612 Conduent (then Xerox). Nearly 17 years later, the equipment still works well, according to Tom Brede, a spokesperson with RTS, but it was nearing the end of its life cycle.

RTS faced a choice: rip out the legacy systems and replace them with something shiny and new or work with Conduent to upgrade the CAD/AVL systems and roll out a new fleet management software that would use advanced algorithms and automation to better orchestrate the authority’s fleet of buses.

First, a pilot

Conduent and RTS decided to run a pilot by replacing its IVU-3100 CAD/AVL system with the newer IVU-4000 in six buses. According to Bill Ruch, vice president and portfolio leader of Conduent’s U.S. Transit division, the upgraded model dramatically improves compute power, data transmission speeds, vehicle communication and location accuracy.

The IVU-4000 is powered by an Intel dual core processor to handle data traffic from each vehicle’s Controller Area Network (CAN) and ancillary components. It comes with 30 times more memory compared to the earlier model and improves WiFi speeds by more than 100 Mbps. This allows the authority to monitor vehicle operation data in real time to answer questions about on-time performance, fleet health, ridership and vehicle operator behaviour.

At the same time, an upgrade to the GPS module pinpoints location of the bus to within 10 to 15 feet. Leveraging new accelerometer capabilities, the authority can also monitor driver behaviour for actions like harsh braking or acceleration. While the IVU-3100 system only supported on-board map segments that were static in nature and therefore did not reflect changes to local area roads, the IVU-4000 uses live updates supported by HERE Maps.

The new CAD/AVL systems also incorporate new features such as back-up camera support, integrated automatic voice annunciation (AVA), flexible bulk transfer, driver behaviour monitoring and text-to-speech. During the pilot, RTS operators were able to receive real-time detour messages alerts, including re-routing information that helped them maintain on-time performance.

“The pilot was a good way to introduce change to drivers, our maintenance teams and other users before the upgrades were implemented system-wide,” Brede said. “Drivers, maintenance people and supervisors provided feedback, and we were able to make tweaks and fix issues that cropped up. Ultimately, what we got is just as good as new systems but without the headache.”

Discussions with a partner

According to Brede, the pilot went well enough that RTS decided to move forward with the upgrade rather than start the procurement process for new systems—a decision that kicked off a series of discussions with Conduent.

“We’ve had a long-term relationship with Conduent, and they made it clear that they were going to be a partner with us no matter what direction we went,” Brede said.

Conduent consultants sat down with RTS engineers to go over the authority’s technology roadmap—a document that Conduent helped create years earlier. Together, the two groups identified priorities and timeframes, going through the results of the pilot to determine how best to roll out the upgrades without disrupting operations. On-going maintenance processes were also mapped out, putting an emphasis on proactive upkeep that would extend the life of the systems even further.

“Conduent knew the product, the systems and how they could all integrate with each other. It just made the whole organization feel comfortable with the decision,” Brede said.

It was this familiarity that Ruch credits with making the entire process seamless. Since 2001 when the original systems were installed, Conduent has maintained a seat at the table, helping RTS think about the next year as well as the next decade.

Conduent and RTS plan to upgrade the backend infrastructure in July before starting to install the new CAD/AVL systems on buses in October. Those should be completed by March for an April full operational go-live. According to Ruch, this timeline is months ahead of where RTS would be if they decided to go with completely new systems. The integration alone would have taken several months, he said, pushing the completion date to late 2019 at the earliest.

The results

In Ruch’s view, the upgrade will allow RTS to monitor bus performance, identify potential maintenance issues, track each bus on a real-time map and—perhaps most importantly—disseminate that information to riders who can check real-time scheduling information through a new Where’s My Bus mobile app.

Supervisors can also communicate directly with drivers, relaying traffic information and rerouting them around accidents and congestion. They can also send mechanics out into the field or instruct drivers to bring buses back to the depot for repairs. All these events will be saved in a maintenance history—providing much needed context for identifying and resolving future issues. According to Ruch, these more robust fleet management capabilities will result in less downtime for buses and keep them on the street longer.

When all is said and done, RTS estimates that it will have saved $8.5 million by upgrading existing systems, money that can now be better spent on other priorities.

“[Transit agencies and transportation authorities like RTS] are always looking for ways to keep costs down,” Ruch said. “The solution we provided limits the amount of labour required to keep buses running. It really almost always comes down to cost and speed to market.”

Saving money and extending the life of assets is great, but Brede doesn’t dismiss the impact the decision to upgrade rather than replace the CAD/AVL systems will have on riders. The entire system will see an improvement, he predicts, with better bus runtimes, more efficiency, less downtime, more on-time buses and, ultimately, a more convenient riding experience.

And that’s really the goal of any ITS implementation.

For more information on companies in this article

Related Content

  • Sensor solutions cuts maintenance and emissions
    December 8, 2014
    The new raft of sensor technology can provide cost savings as well as additional functionality, as David Crawford discovers. Austria’s third-largest city, Linz, with a population of around 200,000, is recording substantial savings in its urban tram network within 18 months of introducing a new, high-technology approach to its public transport management. Tram, bus and trolleybus operator Linz Linien forms part of city utilities management company Linz AG, which has been carrying out a wide-ranging Smart Cit
  • Speed reduction measures - carrot or stick?
    January 23, 2012
    In Sweden, marketing company DDB Stockholm employed a mock speed camera as part of a promotional campaign for automotive manufacturer Volkswagen. The result was worldwide online interest and promotion of the debate over excessive speed to the national level. A developing trend in traffic management policy is to look at how to induce road users to modify their behaviour by incentivising change rather than forcing it through the application of penalties. There have been several studies conducted into this; an
  • Init to upgrade CDTA intelligent transportation management system
    March 21, 2017
    Capital District Transportation Authority (CDTA), located in Albany, New York, has awarded Init the contract to implement an intelligent transportation management system (ITMS) across their entire fixed-route fleet. The contract will modernise CDTA’s existing fleet management system to a cloud-hosted system, upgrade the automatic passenger counting system and deploy real-time passenger infotainment displays on-board and at various stop locations. CDTA customers will have their choice of real-time informa
  • Dynamic Message Signs : Don’t replace, refurbish and upgrade
    August 12, 2015
    Refurbishing old dynamic message signs can save money and increase technical capabilities as David Crawford discovers. Evidence is growing on both sides of the Atlantic of the scope for retrofitting old or technically out-of-date dynamic message signs (DMS) with new electronic equipment, to save on the costs of installing full-scale replacements. In the last four months of 2014, a number of US states progressed programmes that achieved savings of more than US$1.75 million (€1.56million).