Skip to main content

Data provides structural support for BQE

Thousands of bridges in the US are ageing and in need of care and attention. Kistler explains how its WiM technology is helping to preserve New York’s famous Brooklyn-Queens Expressway…
July 28, 2025 Read time: 4 mins
The BQE (© John Penney | Dreamstime.com)

More than 250,000 bridges in the US are more than 50 years old and have exceeded their designated lifetime; 150,000 of them are already classified as deficient or obsolete. But as bridges are notorious bottlenecks, closures always lead to serious traffic disruption - that’s why cities like New York are turning to technologies like Weigh in Motion (WiM). In July 2023, New York governor Kathy Hochul signed a bill allowing the use of WiM on city-owned portions of the Brooklyn-Queens Expressway (BQE) - a triple cantilever built in the mid-20th century - to help enforce truck weight limits. The New York City Department of Transportation can issue tickets based on the WiM data alone – the first time direct weight enforcement has been used in the US. 

 

“Many were not just barely overloaded – they were terribly overloaded”

 

“Once the WiM system was installed, it revealed that one overloaded truck per minute was crossing the bridge,” says JT. Kirkpatrick, sales manager North America traffic solutions at Kistler. “Many were not just barely overloaded – they were terribly overloaded.” Ahead of enforcement, the NYCDoT issued 90 days of warnings to help drivers adjust. 

The effect was immediate and overweight traffic dropped by 64%; in the following six months, after citations began, the number dropped by another 50% compared to the post-warning period. Overall, the city saw an 82% reduction in overweight vehicles crossing the bridge. 

At the same time, NYCDoT uses the gathered data to calculate the current life expectancy of the BQE. Information on whether overloaded trucks are crossing, how many are using the bridge and when the peak times are, result in an accurate traffic load analysis that forms the basis for the calculation.  

 

 NYCDoT uses the gathered data to calculate the current life expectancy of the BQE (© Hansenn | Dreamstime.com)


Structural health monitoring

While enforcement tackles the issue of overloaded vehicles directly, structural health monitoring (SHM) plays a crucial role in ensuring the long-term safety of bridges by continuously monitoring their condition. The measurement systems, based on accelerometers, strain gauge, and other kinds of sensors, record movements and vibrations, providing information on stress and possible corrosion of the structure caused by traffic, wind and temperature fluctuations.

Bridge engineers must place sensors at key points: some of the accelerometers measure vibrations in the centre of the concrete piers. Others are distributed throughout the structure to monitor any significant changes in the bridge’s natural frequency, which indicates possible damage. The sensitivity, frequency range, temperature stability and linearity of the sensors are essential to the quality of the results: these are stored in the cloud in real time, allowing engineers to assess the bridge anytime. “Combined with the associated evaluation and analysis systems, short-term condition monitoring gives bridge owners a picture of its condition and probability of failure,” explains Kirkpatrick. 

“This is important as a reliable basis for a predictive analysis of how funds should be best invested. Long-term bridge monitoring provides more information, enabling authorities and bridge owners to continuously and reliably monitor the condition of bridges and support the planning of maintenance activities through to new construction.”

AI technology meets bridge protection

WiM combined with SHM gives bridge engineers an even better solution, Kirkpatrick believes: “On the one hand, bridge engineers have the products to monitor bridge movement, vibration, and deflection; and on the other hand, they can collect live total loads and even specific data from overloaded trucks in real time. This helps in the subsequent step of reliably calculating the remaining life expectancy of a bridge, rather than just using load assumptions based on standards.” It also provides bridge owners with critical information, such as whether traffic can be safely diverted to one side of the bridge. 

AI technology makes it possible to aggregate and analyse large amounts of data, enabling data-based traffic management that could help keep roads, highways and bridges - as well as everybody using them - safe. “In the future, AI in combination with a network of cameras could provide even more data,” concludes Kirkpatrick. “For instance, transport authorities could discover exact routes taken by overloaded vehicles, or track down uninsured motorists and send them a ticket.” 

For more information on companies in this article

Related Content

  • Belgium to introduce WIM system
    March 11, 2013
    In a bid to prevent the overloading of trucks, the Walloon Region of Belgium is to introduce a dynamic weigh in motion (WIM) system. Sensors installed in the road surface upstream of the fixed weighing stations will detect the vehicle’s weight, while automatic number plate recognition (ANPR) cameras will identify the its registration. Trucks identified as being overweight are then intercepted and directed to the static weighing system. WIM is already in use in the Flanders Region of Belgium. A total of fif
  • Downer Group pioneers incident management via fibre cable
    October 11, 2016
    Downer Group has formed a partnership with Future Fibre Technologies (FFT) to offer a monitoring tool for the detection of incidents on roads, rail lines, bridges, tunnels and more.
  • Cubic’s holistic view of traffic management
    May 25, 2022
    How can cities and transit agencies ease congested roadways? Andy Taylor of Cubic Transportation Systems suggests it would help to take a more holistic view of the problem
  • IRD wins $6.4m WIM system deal in Ukraine
    April 18, 2019
    International Road Dynamics (IRD) is to design and install 20 lanes of Weigh in Motion (WiM) covering six sites on arterial roads around Kiev, Ukraine. The $6.4 million project is seeking to provide a modular system comprised of software, hardware and communication infrastructure for the State Agency of Automobile Roads of Ukraine. The WIM back-office system will collect real-time traffic data and support the enforcement of overweight and over-dimension vehicles as well as those which may be in violatio