Skip to main content

BlackBerry warns of hacking danger

As connected vehicles inch towards becoming a common sight, there are concerns that they are ripe for hacking by malign actors. Alan Dron looks at BlackBerry’s 2022 Threat Report
By Alan Dron May 9, 2022 Read time: 3 mins
No security system can be foolproof - but minimising connected car vulnerabilities is important © Nicoelnino | Dreamstime.com

The potential risk of hackers taking control of a connected vehicle is well known. ‘White hat’ hackers have shown they can hijack the controls of cars, including the brakes and accelerator – a worrying thought as the next generation of cars, with their increasing levels of electronic connectivity, prepare to move off the drawing boards and on to the production lines.

No security system can be foolproof - but building resilience into connected cars from the design stage to minimise vulnerabilities is a crucial first step.

Two recent guidelines from the International Organisation for Standardisation (ISO) and United Nations aim to install that resilience. BlackBerry’s 2022 Threat Report notes that the ISO/Society of Automotive Engineers ISO/SAE 21434 document, published in August 2021, sets the standard for handling security during vehicle design, manufacturing, use and decommissioning, while UN R155 enforces that cybersecurity be considered - not just in vehicles, but also in the surrounding infrastructure.

System vulnerabilities

BlackBerry’s report cautions that there are vulnerabilities that will not be found during system design and development and that preventing these unidentified loopholes from being exploited will involve detecting an attack against the system and preventing it from progressing.

However, one complication in modifying a vehicle’s safety-critical electronic systems to prevent malicious attacks (including introducing a new prevention) will require a re-certification of the system. Re-certification involves performing a hazard analysis for every prevention action that might be taken, BlackBerry notes. The costs and timescales involved in such actions are uncertain.

There are also concerns that the data used to train artificial intelligence (AI) systems in connected vehicles may itself be the target of cyberattacks. “It is, therefore, critical to not treat new AI systems as infallible, and to understand why they fail when they do,” says the report.

Prevention by AI

Work is underway within ISO and SAE to determine the necessary cybersecurity assurance level for various components in the vehicle, based on the cyberthreats they may face.

“Prevention-first AI cybersecurity does not need to focus exclusively on production environments. Preventing the introduction of vulnerabilities during software design and development, including those of AI systems, is another avenue through which cybersecurity can be improved,” says BlackBerry. The company’s Ivy platform is designed to facilitate the introduction of AI into the vehicle.

Sarah Tatsis, BlackBerry’s senior vice president, Ivy Platform Development, predicts that software supply chain security will be a key concern for many vehicle manufacturers in 2022, following a dramatic increase in the number of software supply chain attacks over the last year. “In addition, techniques like using highly complex quantum computing to carry out attacks, or targeting 5G networks, are new approaches that will be require prevention as a priority,” says Tatsis. “Preventing attacks by using AI relies upon detecting and mitigating them before they can be executed.”

She says OEMs can do this by using AI solutions such as BlackBerry Protect, which uses the power of AI to spot the signs of these attacks on the horizon. “Similarly, when an attack is designed to mimic legitimate pages in order to gather confidential or personal information, AI can work to prevent users from opening such URLs, or from visiting spoofed websites,” Tatsis concludes.


Canada’s approach to cyberthreats

In Canada, action is being taken to prevent the threat of attacks on connected vehicles through Transport Canada’s Vehicle Cyber Security Strategy.

Alongside this, a new standard, Road vehicles — Cybersecurity engineering  was published in August 2021. This addresses the cybersecurity perspective in the engineering of electrical and electronic systems within road vehicles.

It is designed to help manufacturers keep abreast of changing technologies and cyberattack methods, and defines the vocabulary, objectives, requirements and guidelines related to cybersecurity engineering for a common understanding throughout the supply chain.

For more information on companies in this article

Related Content

  • IntelliRoad gets Florida wrong-way approval
    October 28, 2024
    Detection system designed to prevent catastrophic collisions is on DoT approved list
  • Low-costs solutions to improve pedestrian safety
    May 8, 2015
    David Crawford welcomes low-cost safety initiatives for pedestrians in America. Some 10 people die each week in accidents on crosswalks in the US, that’s more than 10% of all pedestrian fatalities in road traffic incidents - the number of which is running at a five-year high. Ensuring crosswalks are safe is key in supporting the growing enthusiasm for walking as a travel mode. In the last decade of the 20th century, numbers walking to work in the US fell by 26%; while, as recently as 2012, Americans were e
  • Weigh in Motion gets smarter
    January 4, 2023
    Weigh in Motion technology is at the forefront of protecting road surfaces and helping enforcement activity – but could it also play a key role in the development of Smart Cities?
  • Ford targets fully autonomous vehicle in 2021
    August 17, 2016
    Ford has announced its intention to have a high-volume, fully autonomous vehicle in commercial operation in 2021. The new vehicle will be a Society of Automotive Engineers-rated level 4-capable vehicle without a steering wheel or gas and brake pedals. It is being specifically designed for commercial mobility services, such as ride sharing and ride hailing, and will be available in high volumes. SAE level 4 is one level below full automation and is defined as ‘mode-specific performance by an automated